Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Confocal Brillouin microscopy for three-dimensional mechanical imaging

Abstract

Acoustically induced inelastic light scattering, first reported in 1922 by Brillouin1, allows non-contact, direct readout of the viscoelastic properties of a material and has widely been investigated for material characterization2, structural monitoring3 and environmental sensing4. Extending the Brillouin technique from point sampling spectroscopy to imaging modality5 would open up new possibilities for mechanical imaging, but has been challenging because rapid spectrum acquisition is required. Here, we demonstrate a confocal Brillouin microscope based on a fully parallel spectrometer—a virtually imaged phased array—that improves the detection efficiency by nearly 100-fold over previous approaches. Using the system, we show the first cross-sectional Brillouin imaging based on elastic properties as the contrast mechanism and monitor fast dynamic changes in elastic modulus during polymer crosslinking. Furthermore, we report the first in situ biomechanical measurement of the crystalline lens in a mouse eye. These results suggest multiple applications of Brillouin microscopy in biomedical and biomaterial science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle and schematic of the experimental set-up.
Figure 2: Brillouin spectra of various samples.
Figure 3: Cross-sectional Brillouin image of an intraocular lens.
Figure 4: Real-time monitoring during UV-induced crosslinking of polymer.
Figure 5: In situ characterization of the crystalline lens in a mouse eye.

Similar content being viewed by others

References

  1. Brillouin, L. Diffusion de la lumiere et des rayonnes X par un corps transparent homogene; influence del'agitation thermique. Ann. Phys. (French) 17, 88–122 (1922).

    Article  ADS  Google Scholar 

  2. Dil, J. G. Brillouin-scattering in condensed matter. Rep. Prog. Phys. 45, 285–334 (1982).

    Article  ADS  Google Scholar 

  3. Culshaw, B., Michie, C., Gardiner, P. & McGown, A. Smart structures and applications in civil engineering. Proc. IEEE 84, 78–86 (1996).

    Article  Google Scholar 

  4. Eloranta, E. W. High spectral resolution lidar. in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere 143–164 (ed. Weitkamp, C.) (Springer-Verlag, New York, 2005).

    Chapter  Google Scholar 

  5. Koski, K. J. & Yarger, J. L. Brillouin imaging. Appl. Phys. Lett. 87, 061903 (2005).

    Article  ADS  Google Scholar 

  6. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (Springer-Verlag, New York, 1993).

    Book  Google Scholar 

  7. Comoglio, P. M. & Trusolino, L. Cancer: the matrix is now in control. Nature Med. 11, 1156–1159 (2005).

    Article  Google Scholar 

  8. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    Article  ADS  Google Scholar 

  9. Claessens, M. M. A. E., Tharmann, R., Kroy, K. & Bausch, A. R. Microstructure and viscoelasticity of confined serniflexible polymer networks. Nature Phys. 2, 186–189 (2006).

    Article  ADS  Google Scholar 

  10. Bao, G. & Suresh, S. Cell and molecular mechanics of biological materials. Nature Mater. 2, 715–725 (2003).

    Article  ADS  Google Scholar 

  11. Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y. & Li, X. Elastography—a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13, 111–134 (1991).

    Article  Google Scholar 

  12. Greenleaf, J. F., Fatemi, M. & Insana, M. Selected methods for imaging elastic properties of biological tissues. Ann. Rev. Biomed. Eng. 5, 57–78 (2003).

    Article  Google Scholar 

  13. Harley, R., James, D., Miller, A. & White, J. W. Phonons and elastic-moduli of collagen and muscle. Nature 267, 285–287 (1977).

    Article  ADS  Google Scholar 

  14. Randall, J. & Vaughan, J. M. Brillouin scattering in systems of biological significance. Phil. Trans. R. Soc. Lond. A 293, 341–348 (1979).

    Article  ADS  Google Scholar 

  15. Lees, S., Tao, N. J. & Lindsay, S. M. Studies of compact hard tissues and collagen by means of Brillouin light-scattering. Connect. Tissue Res. 24, 187–205 (1990).

    Article  Google Scholar 

  16. Vaughan, J. M. & Randall, J. T. Brillouin scattering, density and elastic properties of the lens and cornea of the eye. Nature 284, 489–491 (1980).

    Article  ADS  Google Scholar 

  17. Randall, J. & Vaughan, J. M. The measurement and interpretation of Brillouin scattering in the lens of the eye. Proc. R. Soc. Lond. B 214, 449–470 (1982).

    Article  ADS  Google Scholar 

  18. Lindsay, S. M., Anderson, M. W. & Sandercock, J. R. Construction and alignment of a high-performance multipass vernier tandem Fabry–Perot interferometer. Rev. Sci. Instrum. 52, 1478–1486 (1981).

    Article  ADS  Google Scholar 

  19. Benassi, P., Eramo, R., Giugni, A., Nardone, M. & Sampoli, M. A spectrometer for high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet. Rev. Sci. Instrum. 76, 013904 (2005).

    Article  ADS  Google Scholar 

  20. Tanaka, H. & Sonehara, T. New method of superheterodyne light beating spectroscopy for Brillouin scattering using frequency-tunable lasers. Phys. Rev. Lett. 74, 1609–1612 (1995).

    Article  ADS  Google Scholar 

  21. Itoh, S. Very rapid nonscanning Brillouin spectroscopy using fixed etalons and multichannel detectors. Jpn J. Appl. Phys. 37, 3134–3135 (1998).

    Article  ADS  Google Scholar 

  22. Shirasaki, M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Opt. Lett. 21, 366–368 (1996).

    Article  ADS  Google Scholar 

  23. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  24. Wang, T. D., Mandella, M. J., Contag, C. H. & Kino, G. S. Dual-axis confocal microscope for high-resolution in vivo imaging. Opt. Lett. 28, 414–416 (2003).

    Article  ADS  Google Scholar 

  25. Danielmeyer, H. G. Aperture corrections for sound-absorption measurements with light scattering. J. Acoust. Soc. Am. 47, 151–154 (1970).

    Article  ADS  Google Scholar 

  26. Faris, G. W., Jusinski, L. E. & Hickman, A. P. High-resolution stimulated Brillouin gain spectroscopy in glasses and crystals. J. Opt. Soc. Am. B 10, 587–599 (1993).

    Article  ADS  Google Scholar 

  27. Ahsan, T., Harwood, F., McGowan, K. B., Amiel, D. & Sah, R. L. Kinetics of collagen crosslinking in adult bovine articular cartilage. Osteoarth. Cart. 13, 709–715 (2005).

    Article  Google Scholar 

  28. Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999).

    Article  ADS  Google Scholar 

  29. Heys, K. R., Cram, S. L. & Truscott, R. J. W. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol. Vis. 10, 956–963 (2004).

    Google Scholar 

  30. Ethier, C. R., Johnson, M. & Ruberti, J. Ocular biomechanics and biotransport. Ann. Rev. Biomed. Eng. 6, 249–273 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Defense (FA9550-04-1-0079) and the Center for Integration of Medicine and Innovative Technologies (CIMIT). We thank P. Kim for preparing the eye sample, C.P. Lin for lending us the CCD camera, and I.E. Kochevar and R.W. Redmond for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok Hyun Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarcelli, G., Yun, S. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nature Photon 2, 39–43 (2008). https://doi.org/10.1038/nphoton.2007.250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing