Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics

Abstract

Ultrafast electron microscopy (UEM) has been demonstrated as an effective table-top technique for imaging the temporally evolving dynamics of matter with a subparticle spatial resolution on the timescale of atomic motion. However, imaging the faster motion of electron dynamics in real time has remained beyond reach. Here we demonstrate more than an order of magnitude (16 times) enhancement in the typical temporal resolution of UEM by generating isolated 30 fs electron pulses, accelerated at 200 keV, via the optical-gating approach, with sufficient intensity to probe efficiently the electronic dynamics of matter. Moreover, we investigate the feasibility of attosecond optical gating to generate isolated subfemtosecond electron pulses and attain the desired temporal resolution in electron microscopy to establish ‘attomicroscopy’ to allow the imaging of electron motion in the act.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up of the optical gating in the UEM.
Figure 2: Temporal characterization of an ultrafast electron pulse.
Figure 3: Temporal characterization of a gated electron pulse.
Figure 4: Attosecond optical gating of the electron pulse.

Similar content being viewed by others

References

  1. Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001).

    Article  ADS  Google Scholar 

  2. Srinivasan, R. et al. Dark structures in molecular radiationless transitions determined by ultrafast diffraction. Science 307, 558–563 (2005).

    Article  ADS  Google Scholar 

  3. Gao, M. et al. Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature 496, 343–346 (2013).

    Article  ADS  Google Scholar 

  4. Wall, S. et al. Atomistic picture of charge density wave formation at surfaces. Phys. Rev. Lett. 109, 186101 (2012).

    Article  ADS  Google Scholar 

  5. Carbone, F., Kwon, O.-H. & Zewail, A. H. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 325, 181–184 (2009).

    Article  ADS  Google Scholar 

  6. Baum, P., Yang, D.-S. & Zewail, A. H. 4D visualization of transitional structures in phase transformations by electron diffraction. Science 318, 788–792 (2007).

    Article  ADS  Google Scholar 

  7. Eichberger, M. et al. Snapshots of cooperative atomic motions in the optical suppression of charge density waves. Nature 468, 799–802 (2010).

    Article  ADS  Google Scholar 

  8. Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346, 445–448 (2014).

    Article  ADS  Google Scholar 

  9. Weathersby, S. et al. Mega-electron-volt ultrafast electron diffraction at SLAC national accelerator laboratory. Rev. Sci. Instrum. 86, 073702 (2015).

    Article  ADS  Google Scholar 

  10. Yang, J. et al. Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses. Nat. Commun. 7, 11232 (2016).

    Article  ADS  Google Scholar 

  11. Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70 (2016).

    Article  ADS  Google Scholar 

  12. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  13. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    Article  ADS  Google Scholar 

  14. Consani, C., Auböck, G., van Mourik, F. & Chergui, M. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy. Science 339, 1586–1589 (2013).

    Article  ADS  Google Scholar 

  15. Niikura, H. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002).

    Article  ADS  Google Scholar 

  16. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    Article  ADS  Google Scholar 

  17. van Oudheusden, T. et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105, 264801 (2010).

    Article  ADS  Google Scholar 

  18. Chatelain, R. P., Morrison, V. R., Godbout, C. & Siwick, B. J. Ultrafast electron diffraction with radio-frequency compressed electron pulses. Appl. Phys. Lett. 101, 081901 (2012).

    Article  ADS  Google Scholar 

  19. Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  20. Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Miller, R. D. An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003).

    Article  ADS  Google Scholar 

  21. Ernstorfer, R. et al. The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science 323, 1033–1037 (2009).

    Article  ADS  Google Scholar 

  22. Shao, H.-C. & Starace, A. F. Detecting electron motion in atoms and molecules. Phys. Rev. Lett. 105, 263201 (2010).

    Article  ADS  Google Scholar 

  23. Yakovlev, V. S., Stockman, M. I., Krausz, F. & Baum, P. Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter. Sci. Rep. 5, 14581 (2015).

    Article  ADS  Google Scholar 

  24. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article  ADS  Google Scholar 

  25. Park, S. T., Lin, M. & Zewail, A. H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12, 103021 (2010).

    Article  Google Scholar 

  26. Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

    Article  ADS  Google Scholar 

  27. Kozák, M. et al. Optical gating and streaking of free electrons with sub-optical cycle precision. Nat. Commun. 8, 14342 (2017).

    Article  ADS  Google Scholar 

  28. Park, S. T. & Zewail, A. H. Enhancing image contrast and slicing electron pulses in 4D near field electron microscopy. Chem. Phys. Lett. 521, 1–6 (2012).

    Article  ADS  Google Scholar 

  29. Hassan, M. T., Liu, H., Baskin, J. S. & Zewail, A. H. Photon gating in four-dimensional ultrafast electron microscopy. Proc. Natl Acad. Sci. USA 112, 12944–12949 (2015).

    Article  ADS  Google Scholar 

  30. Liu, H., Baskin, J. S. & Zewail, A. H. Infrared PINEM developed by diffraction in 4D UEM. Proc. Natl Acad. Sci. USA 113, 2041–2046 (2016).

    Article  ADS  Google Scholar 

  31. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  32. Nanni, E. A. et al. Terahertz-driven linear electron acceleration. Nat. Commun. 6, 8486 (2015).

    Article  ADS  Google Scholar 

  33. Walbran, M. et al. 5-femtosecond laser-electron synchronization for pump–probe crystallography and diffraction. Phys. Rev. Appl. 4, 044013 (2015).

    Article  ADS  Google Scholar 

  34. Schulz, S. et al. Femtosecond all-optical synchronization of an X-ray free-electron laser. Nat. Commun. 6, 5938 (2015).

    Article  ADS  Google Scholar 

  35. Baum, P. & Zewail, A. H. Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl Acad. Sci. USA 104, 18409–18414 (2007).

    Article  ADS  Google Scholar 

  36. Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011).

    Article  ADS  Google Scholar 

  37. Rossi, F. & Kuhn, T. Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74, 895–950 (2002).

    Article  ADS  Google Scholar 

  38. Cavalieri, A. L. et al. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-X-ray harmonic continua. New J. Phys. 9, 242 (2007).

    Article  ADS  Google Scholar 

  39. García de Abajo, F. J., Asenjo-Garcia, A. & Kociak, M. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 10, 1859–1863 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. M. Vanacore and T. Karam for fruitful discussions. This work was supported by the National Science Foundation Grant DMR-0964886 and the Air Force Office of Scientific Research Grant FA9550-11-1-0055 for research conducted in The Gordon and Betty Moore Center for Physical Biology at the California Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

M.Th.H. conceived the idea; M.Th.H., J.S.B. and A.H.Z. designed the experiment; M.Th.H. and J.S.B. conducted the experiments; M.Th.H., J.S.B. and A.H.Z. conducted the analysis of the first set of results. M.Th.H. and B.L. conducted the simulations; B.L., J.S.B. and M.Th.H. interpreted the data and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to M. Th. Hassan or J. S. Baskin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M., Baskin, J., Liao, B. et al. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nature Photon 11, 425–430 (2017). https://doi.org/10.1038/nphoton.2017.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing