Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Time stretch and its applications

Abstract

Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Digitizer bottlenecks and solutions via time stretch.
Figure 2: Building blocks of a time-stretch system.
Figure 3: Different dispersion devices.
Figure 4: Applications of time stretch.

Similar content being viewed by others

References

  1. Jalali, B., Solli, D., Goda, K., Tsia, K. & Ropers, C. Real-time measurements, rare events and photon economics. Eur. Phys. J. Special Topics 185, 145–157 (2010).

    Article  ADS  Google Scholar 

  2. Taleb, N. N. The Black Swan: The Impact of the Highly Improbable (Random House, 2007).

    Google Scholar 

  3. VanderLugt, A. Optical Signal Processing (Wiley, 2005).

    Google Scholar 

  4. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  ADS  Google Scholar 

  5. Solli, D., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).

    Article  ADS  Google Scholar 

  6. Akhmediev, N., Ankiewicz, A. & Taki, M. Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009).

    Article  ADS  MATH  Google Scholar 

  7. Pisarchik, A. N., Jaimes-Reátegui, R., Sevilla-Escoboza, R., Huerta-Cuellar, G. & Taki, M. Rogue waves in a multistable system. Phys. Rev. Lett. 107, 274101 (2011).

    Article  ADS  Google Scholar 

  8. Dudley, J. M., Dias, F., Erkintalo, M. & Genty, G. Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755–764 (2014).

    Article  ADS  Google Scholar 

  9. Akhmediev, N. et al. Roadmap on optical rogue waves and extreme events. J. Opt. 18, 063001 (2016).

    Article  ADS  Google Scholar 

  10. Suret, P. et al. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun. 7, 13136 (2016).

    Article  ADS  Google Scholar 

  11. Mahjoubfar, A., Goda, K., Betts, G. & Jalali, B. Optically amplified detection for biomedical sensing and imaging. J. Opt. Soc. Am. A 30, 2124–2132 (2013).

    Article  ADS  Google Scholar 

  12. Bhushan, A., Coppinger, F. & Jalali, B. Time-stretched analogue-to-digital conversion. Electron. Lett. 34, 1081–1082 (1998).

    Article  Google Scholar 

  13. Coppinger, F., Bhushan, A. & Jalali, B. Photonic time stretch and its application to analog-to-digital conversion. IEEE Trans. Microwave Theory Techniques 47, 1309–1314 (1999).

    Article  ADS  Google Scholar 

  14. Jalali, B. & Coppinger, F. M. A. Data conversion using time manipulation. US patent US6288659 (2001).

  15. Runge, A. F., Broderick, N. G. & Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2, 36–39 (2015).

    Article  ADS  Google Scholar 

  16. Herink, G., Kurtz, F., Jalali, B., Solli, D. & Ropers, C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017).

    Article  ADS  Google Scholar 

  17. Roussel, E. et al. Observing microscopic structures of a relativistic object using a time-stretch strategy. Sci. Rep. 5, 10330 (2015).

    Article  ADS  Google Scholar 

  18. Evain, C. et al. Direct observation of spatiotemporal dynamics of short electron bunches in storage rings. Phys. Rev. Lett. 118, 054801 (2017).

    Article  ADS  Google Scholar 

  19. Solli, D., Chou, J. & Jalali, B. Amplified wavelength–time transformation for real-time spectroscopy. Nat. Photon. 2, 48–51 (2008).

    Article  ADS  Google Scholar 

  20. Saltarelli, F. et al. Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher. Opt. Express 24, 21264–21275 (2016).

    Article  ADS  Google Scholar 

  21. Dobner, S. & Fallnich, C. Dispersive Fourier transformation femtosecond stimulated Raman scattering. Appl. Phys. B 122, 278 (2016).

    Article  ADS  Google Scholar 

  22. Chen, C. L. et al. Deep learning in label-free cell classification. Sci. Rep. 6, 21471 (2016).

    Article  ADS  Google Scholar 

  23. Jalali, B., Chan, J. & Asghari, M. H. Time–bandwidth engineering. Optica 1, 23–31 (2014).

    Article  ADS  Google Scholar 

  24. Chan, J. C., Mahjoubfar, A., Chen, C. L. & Jalali, B. Context-aware image compression. PLoS ONE 11, e0158201 (2016).

    Article  Google Scholar 

  25. Asghari, M. H. & Jalali, B. Anamorphic transformation and its application to time–bandwidth compression. Appl. Opt. 52, 6735–6743 (2013).

    Article  ADS  Google Scholar 

  26. Mahjoubfar, A., Chen, C. L. & Jalali, B. Design of warped stretch transform. Sci. Rep. 5, 17148 (2015).

    Article  ADS  Google Scholar 

  27. Chen, C. L., Mahjoubfar, A. & Jalali, B. Optical data compression in time stretch imaging. PLoS ONE 10, e0125106 (2015).

    Article  Google Scholar 

  28. Jalali, B. & Mahjoubfar, A. Tailoring wideband signals with a photonic hardware accelerator. Proc. IEEE 103, 1071–1086 (2015).

    Article  Google Scholar 

  29. Chou, J., Boyraz, O., Solli, D. & Jalali, B. Femtosecond real-time single-shot digitizer. Appl. Phys. Lett. 91, 161105 (2007).

    Article  ADS  Google Scholar 

  30. Goda, K., Tsia, K. & Jalali, B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458, 1145–1149 (2009).

    Article  ADS  Google Scholar 

  31. Mahjoubfar, A. et al. High-speed nanometer-resolved imaging vibrometer and velocimeter. Appl. Phys. Lett. 98, 101107 (2011).

    Article  ADS  Google Scholar 

  32. Wong, T. T., Lau, A. K., Wong, K. K. & Tsia, K. K. Optical time-stretch confocal microscopy at 1 μm. Opt. Lett. 37, 3330–3332 (2012).

    Article  ADS  Google Scholar 

  33. Bosworth, B. T. et al. High-speed flow microscopy using compressed sensing with ultrafast laser pulses. Opt. Express 23, 10521–10532 (2015).

    Article  ADS  Google Scholar 

  34. Han, Y. & Jalali, B. Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations. J. Lightwave Technol. 21, 3085–3103 (2003).

    Article  ADS  Google Scholar 

  35. Fard, A. M., Gupta, S. & Jalali, B. Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging. Laser Photon. Rev. 7, 207–263 (2013).

    Article  ADS  Google Scholar 

  36. Kim, J., Park, M. J., Perrott, M. H. & Kärtner, F. X. Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution. Opt. Express 16, 16509–16515 (2008).

    Article  ADS  Google Scholar 

  37. Konishi, T., Tanimura, K., Asano, K., Oshita, Y. & Ichioka, Y. All-optical analog-to-digital converter by use of self-frequency shifting in fiber and a pulse-shaping technique. J. Opt. Soc. Am. B 19, 2817–2823 (2002).

    Article  ADS  Google Scholar 

  38. Portuondo-Campa, E., Paschotta, R. & Lecomte, S. Sub-100 attosecond timing jitter from low-noise passively mode-locked solid-state laser at telecom wavelength. Opt. Lett. 38, 2650–2653 (2013).

    Article  ADS  Google Scholar 

  39. Lonappan, C. K., Madni, A. M. & Jalali, B. Single-shot network analyzer for extremely fast measurements. Appl. Optics 55, 8406–8412 (2016).

    Article  ADS  Google Scholar 

  40. Jalali, B., Chan, J. & Mahjoubfar, A. Analog gearbox: a photonic hardware accelerator. In Avionics Vehicle Fiber-Optics Photon. Conf. (AVFOP) 1–2 (IEEE, 2016).

    Google Scholar 

  41. Yegnanarayanan, S., Trinh, P. & Jalali, B. Recirculating photonic filter: a wavelength-selective time delay for phased-array antennas and wavelength code-division multiple access. Opt. Lett. 21, 740–742 (1996).

    Article  ADS  Google Scholar 

  42. Solli, D., Gupta, S. & Jalali, B. Optical phase recovery in the dispersive Fourier transform. Appl. Phys. Lett. 95, 231108 (2009).

    Article  ADS  Google Scholar 

  43. Buckley, B. W., Madni, A. M. & Jalali, B. Coherent time-stretch transformation for real-time capture of wideband signals. Opt. Express 21, 21618–21627 (2013).

    Article  ADS  Google Scholar 

  44. Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997).

    Article  ADS  Google Scholar 

  45. Iaconis, C. & Walmsley, I. A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998).

    Article  ADS  Google Scholar 

  46. Konishi, T., Kato, T. & Goto, H. Waveform reconstruction device, waveform reconstruction system, and waveform reconstruction method. US patent US8886037 (2014).

  47. DeVore, P. T., Buckley, B. W., Asghari, M. H., Solli, D. R. & Jalali, B. Coherent time-stretch transform for near-field spectroscopy. IEEE Photon. J. 6, 1–7 (2014).

    Article  Google Scholar 

  48. Mahjoubfar, A., Chen, C., Niazi, K. R., Rabizadeh, S. & Jalali, B. Label-free high-throughput cell screening in flow. Biomed. Opt. Express 4, 1618–1625 (2013).

    Article  Google Scholar 

  49. Han, Y. & Jalali, B. Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating. IEEE Trans. Circuits Systems I: Regular Papers 52, 1502–1507 (2005).

    Article  Google Scholar 

  50. Chou, J., Conway, J. A., Sefler, G. A., Valley, G. C. & Jalali, B. Photonic bandwidth compression front end for digital oscilloscopes. J. Lightwave Technol. 27, 5073–5077 (2009).

    Article  ADS  Google Scholar 

  51. Ng, W., Rockwood, T., Sefler, G. & Valley, G. Demonstration of a large stretch-ratio photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz. IEEE Photon. Technol. Lett. 24, 1185–1187 (2012).

    Article  ADS  Google Scholar 

  52. Wong, J. H. et al. Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme. J. Lightwave Technol. 29, 3099–3106 (2011).

    Article  ADS  Google Scholar 

  53. Valley, G. C. Photonic analog-to-digital converters. Opt. Express 15, 1955–1982 (2007).

    Article  ADS  Google Scholar 

  54. Stigwall, J. & Galt, S. Signal reconstruction by phase retrieval and optical backpropagation in phase-diverse photonic time-stretch systems. J. Lightwave Technol. 25, 3017–3027 (2007).

    Article  ADS  Google Scholar 

  55. Han, Y., Boyraz, O. & Jalali, B. Ultrawide-band photonic time-stretch A/D converter employing phase diversity. IEEE Trans. Microwave Theory Techniques 53, 1404–1408 (2005).

    Article  ADS  Google Scholar 

  56. Fuster, J., Novak, D., Nirmalathas, A. & Marti, J. Single-sideband modulation in photonic time-stretch analogue-to-digital conversion. Electron. Lett. 37, 67–68 (2001).

    Article  Google Scholar 

  57. Fard, A. et al. All-optical time-stretch digitizer. Appl. Phys. Lett. 101, 051113 (2012).

    Article  ADS  Google Scholar 

  58. Lonappan, C. K. et al. Time-stretch accelerated processor for real-time, in-service, signal analysis. In IEEE Global Conf. Signal Information Processing 707–711 (2014).

  59. Kitayama, K.-I. & Wada, N. Photonic IP routing. IEEE Photon. Technol. Lett. 11, 1689–1691 (1999).

    Article  ADS  Google Scholar 

  60. Wada, N. & Kitayama, K.-I. A 10 gb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection. J. Lightwave Technol. 17, 1758–1765 (1999).

    Article  ADS  Google Scholar 

  61. Ruban, V. et al. Rogue waves—towards a unifying concept?: Discussions and debates. Eur. Phys. J. Special Topics 185, 5–15 (2010).

    Article  ADS  Google Scholar 

  62. Wetzel, B. et al. Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Sci. Rep. 2, 882 (2012).

    Article  Google Scholar 

  63. Solli, D., Herink, G., Jalali, B. & Ropers, C. Fluctuations and correlations in modulation instability. Nat. Photon. 6, 463–468 (2012).

    Article  ADS  Google Scholar 

  64. Godin, T. et al. Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Opt. Express 21, 18452–18460 (2013).

    Article  ADS  Google Scholar 

  65. Dean, R. in Water Wave Kinematics 609–612 (Springer, 1990).

    Book  Google Scholar 

  66. Kharif, C. & Pelinovsky, E. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B 22, 603–634 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  67. Gabaix, X., Gopikrishnan, P., Plerou, V. & Stanley, H. E. A theory of power-law distributions in financial market fluctuations. Nature 423, 267–270 (2003).

    Article  ADS  MATH  Google Scholar 

  68. Anderson, C. The Long Tail: Why the Future of Business is Selling Less of More (Hachette Books, 2006).

    Google Scholar 

  69. Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Pisarenko, V. & Rodkin, M. Heavy-Tailed Distributions in Disaster Analysis (Springer Science & Business Media, 2010).

    Book  Google Scholar 

  71. Zhen-Ya, Y. Financial rogue waves. Commun. Theor. Phys. 54, 947–949 (2010).

    Article  ADS  MATH  Google Scholar 

  72. Birkholz, S., Brée, C., Demircan, A. & Steinmeyer, G. Predictability of rogue events. Phys. Rev. Lett. 114, 213901 (2015).

    Article  ADS  Google Scholar 

  73. Cundiff, S. T., Soto-Crespo, J. M. & Akhmediev, N. Experimental evidence for soliton explosions. Phys. Rev. Lett. 88, 073903 (2002).

    Article  ADS  Google Scholar 

  74. Soto-Crespo, J. M., Akhmediev, N. & Ankiewicz, A. Pulsating, creeping, and erupting solitons in dissipative systems. Phys. Rev. Lett. 85, 2937–2940 (2000).

    Article  ADS  Google Scholar 

  75. Runge, A. F., Broderick, N. G. & Erkintalo, M. Dynamics of soliton explosions in passively mode-locked fiber lasers. J. Opt. Soc. Am. B 33, 46–53 (2016).

    Article  ADS  Google Scholar 

  76. Akhmediev, N., Dudley, J. M., Solli, D. & Turitsyn, S. Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013).

    Article  ADS  Google Scholar 

  77. Liu, Z., Zhang, S. & Wise, F. W. Rogue waves in a normal-dispersion fiber laser. Opt. Lett. 40, 1366–1369 (2015).

    Article  ADS  Google Scholar 

  78. Lecaplain, C. & Grelu, P. Rogue waves among noiselike-pulse laser emission: an experimental investigation. Phys. Rev. A 90, 013805 (2014).

    Article  ADS  Google Scholar 

  79. Runge, A. F., Aguergaray, C., Broderick, N. G. & Erkintalo, M. Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers. Opt. Lett. 38, 4327–4330 (2013).

    Article  ADS  Google Scholar 

  80. Solli, D. R., Ropers, C. & Jalali, B. Active control of rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett. 101, 233902 (2008).

    Article  ADS  Google Scholar 

  81. Runge, A. F., Aguergaray, C., Broderick, N. G. & Erkintalo, M. Raman rogue waves in a partially mode-locked fiber laser. Opt. Lett. 39, 319–322 (2014).

    Article  ADS  Google Scholar 

  82. Descloux, D. et al. Spectrotemporal dynamics of a picosecond OPO based on chirped quasi-phase-matching. Opt. Lett. 40, 280–283 (2015).

    Article  ADS  Google Scholar 

  83. Akhmediev, N., Ankiewicz, A. & Soto-Crespo, J. Multisoliton solutions of the complex Ginzburg–Landau equation. Phys. Rev. Lett. 79, 4047–4051 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Ortaç, B. et al. Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser. Opt. Lett. 35, 1578–1580 (2010).

    Article  ADS  Google Scholar 

  85. Soto-Crespo, J. M., Grelu, P., Akhmediev, N. & Devine, N. Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs. Phys. Rev. E 75, 016613 (2007).

    Article  ADS  Google Scholar 

  86. Chen, W.-C., Chen, G.-J., Han, D.-A. & Li, B. Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber. Opt. Fiber Technol. 20, 199–207 (2014).

    Article  ADS  Google Scholar 

  87. Chouli, S. & Grelu, P. Soliton rains in a fiber laser: an experimental study. Phys. Rev. A 81, 063829 (2010).

    Article  ADS  Google Scholar 

  88. Chouli, S. & Grelu, P. Rains of solitons in a fiber laser. Opt. Express 17, 11776–11781 (2009).

    Article  ADS  Google Scholar 

  89. Bao, C., Xiao, X. & Yang, C. Soliton rains in a normal dispersion fiber laser with dual-filter. Opt. Lett. 38, 1875–1877 (2013).

    Article  ADS  Google Scholar 

  90. Niang, A., Amrani, F., Salhi, M., Grelu, P. & Sanchez, F. Rains of solitons in a figure-of-eight passively mode-locked fiber laser. Appl. Phys. B 116, 771–775 (2014).

    Article  ADS  Google Scholar 

  91. Huang, S. et al. Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Laser Phys. Lett. 11, 025102 (2013).

    Article  ADS  Google Scholar 

  92. Kelleher, E. & Travers, J. Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers. Opt. Lett. 39, 1398–1401 (2014).

    Article  ADS  Google Scholar 

  93. Churkin, D. et al. Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers. Nat. Commun. 6, 7004 (2015).

    Article  ADS  Google Scholar 

  94. Donovan, G. M. Dynamics and statistics of noise-like pulses in modelocked lasers. Physica D 309, 1–8 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  95. Krejcik, P. et al. Commissioning the new LCLS X-band transverse deflecting cavity with femtosecond resolution. In Proc. Int. Beam Instrumentation Conf. 308–311 (2013).

  96. Chan, J., Mahjoubfar, A., Asghari, M. & Jalali, B. Reconstruction in time-bandwidth compression systems. Appl. Phys. Lett. 105, 221105 (2014).

    Article  ADS  Google Scholar 

  97. Goda, K. et al. High-throughput single-microparticle imaging flow analyzer. Proc. Natl Acad. Sci. USA 109, 11630–11635 (2012).

    Article  ADS  Google Scholar 

  98. Xing, F. et al. A 2-GHz discrete-spectrum waveband-division microscopic imaging system. Opt. Commun. 338, 22–26 (2015).

    Article  ADS  Google Scholar 

  99. Avila, K. et al. The onset of turbulence in pipe flow. Science 333, 192–196 (2011).

    Article  ADS  MATH  Google Scholar 

  100. Tarasov, N., Sugavanam, S. & Churkin, D. Spatio-temporal generation regimes in quasi-CW Raman fiber lasers. Opt. Express 23, 24189–24194 (2015).

    Article  ADS  Google Scholar 

  101. Wabnitz, S. Optical turbulence in fiber lasers. Opt. Lett. 39, 1362–1365 (2014).

    Article  ADS  Google Scholar 

  102. Horowitz, M. & Silberberg, Y. Control of noiselike pulse generation in erbium-doped fiber lasers. IEEE Photon. Technol. Lett. 10, 1389–1391 (1998).

    Article  ADS  Google Scholar 

  103. Zhao, L., Tang, D., Cheng, T., Tam, H. & Lu, C. 120nm bandwidth noise-like pulse generation in an erbium-doped fiber laser. Opt. Commun. 281, 157–161 (2008).

    Article  ADS  Google Scholar 

  104. Kobtsev, S., Kukarin, S., Smirnov, S., Turitsyn, S. & Latkin, A. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Opt. Express 17, 20707–20713 (2009).

    Article  ADS  Google Scholar 

  105. North, T. & Rochette, M. Raman-induced noiselike pulses in a highly nonlinear and dispersive all-fiber ring laser. Opt. Lett. 38, 890–892 (2013).

    Article  ADS  Google Scholar 

  106. Suzuki, M., Ganeev, R. A., Yoneya, S. & Kuroda, H. Generation of broadband noise-like pulse from Yb-doped fiber laser ring cavity. Opt. Lett. 40, 804–807 (2015).

    Article  ADS  Google Scholar 

  107. Kalaycioğlu, H., Akçaalan, Ö., Yavaş, S., Eldeniz, Y. & Ilday, F. Burst-mode Yb-doped fiber amplifier system optimized for low-repetition-rate operation. J. Opt. Soc. Am. B 32, 900–906 (2015).

    Article  ADS  Google Scholar 

  108. Andral, U. et al. Fiber laser mode locked through an evolutionary algorithm. Optica 2, 275–278 (2015).

    Article  ADS  Google Scholar 

  109. Lecaplain, C., Grelu, P., Soto-Crespo, J. & Akhmediev, N. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 108, 233901 (2012).

    Article  ADS  Google Scholar 

  110. Liu, M. et al. Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device. Opt. Lett. 40, 4767–4770 (2015).

    Article  ADS  Google Scholar 

  111. Sugavanam, S., Tarasov, N., Wabnitz, S. & Churkin, D. V. Ginzburg–Landau turbulence in quasi-CW Raman fiber lasers. Laser Photon. Rev. 9, L35–L39 (2015).

    Article  ADS  Google Scholar 

  112. Chen, S., Soto-Crespo, J. M. & Grelu, P. Dark three-sister rogue waves in normally dispersive optical fibers with random birefringence. Opt. Express 22, 27632–27642 (2014).

    Article  ADS  Google Scholar 

  113. Chen, S., Soto-Crespo, J. M. & Grelu, P. Watch-hand-like optical rogue waves in three-wave interactions. Opt. Express 23, 349–359 (2015).

    Article  ADS  Google Scholar 

  114. Chen, S. et al. Optical rogue waves in parametric three-wave mixing and coherent stimulated scattering. Phys. Rev. A 92, 033847 (2015).

    Article  ADS  Google Scholar 

  115. Raich, U. in CAS CERN Accelerator School: Ion Sources (ed. Bailey, R.) 503–514 (CERN, 2013).

    Google Scholar 

  116. Saeys, Y., Van Gassen, S. & Lambrecht, B. N. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 16, 449–462 (2016).

    Article  Google Scholar 

  117. Adam, J., Mahjoubfar, A., Diebold, E. D., Buckley, B. W. & Jalali, B. Spectrally encoded angular light scattering. Opt. Express 21, 28960–28967 (2013).

    Article  ADS  Google Scholar 

  118. Lei, M., Zou, W., Li, X. & Chen, J. Ultrafast FBG interrogator based on time-stretch method. IEEE Photon. Technol. Lett. 28, 778–781 (2016).

    Article  ADS  Google Scholar 

  119. Solli, D. R. & Jalali, B. Analog optical computing. Nat. Photon. 9, 704–706 (2015).

    Article  ADS  Google Scholar 

  120. Asghari, M. H. & Jalali, B. Edge detection in digital images using dispersive phase stretch transform. J. Biomed. Imaging 2015, 687819 (2015).

    Google Scholar 

  121. Ilovitsh, T., Jalali, B., Asghari, M. H. & Zalevsky, Z. Phase stretch transform for super-resolution localization microscopy. Biomed. Opt. Express 7, 4198–4209 (2016).

    Article  Google Scholar 

  122. Diebold, E. D. et al. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide. Opt. Express 19, 23809–23817 (2011).

    Article  ADS  Google Scholar 

  123. Herink, G., Jalali, B., Ropers, C. & Solli, D. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photon. 10, 321–326 (2016).

    Article  ADS  Google Scholar 

  124. Jalali, B., Soon-Shiong, P. & Goda, K. Breaking speed and sensitivity limits: real-time diagnostics with serial time-encoded amplified microscopy. Optik Photonik 5, 32–36 (2010).

    Article  Google Scholar 

  125. Mahjoubfar, A. et al. 3D ultrafast laser scanner. SPIE Proc. 8611, 86110N (2013).

    Article  Google Scholar 

  126. Goda, K., Solli, D. R., Tsia, K. K. & Jalali, B. Theory of amplified dispersive Fourier transformation. Phys. Rev. A 80, 043821 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Bielawski at Universite des Sciences et Technologies de Lille, France for invaluable discussions on electron-beam diagnostics. We are also thankful to D. Solli at UCLA for helpful comments. The work at UCLA was partially supported by the Office of Naval Research (ONR) Multidisciplinary University Research Initiatives (MURI) on Optical Computing and by NantWorks, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Jalali.

Ethics declarations

Competing interests

B.J. is a co-founder of Time Photonics, the manufacturer of RogueScope, a single-shot spectrometer based on the time-stretch technique.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahjoubfar, A., Churkin, D., Barland, S. et al. Time stretch and its applications. Nature Photon 11, 341–351 (2017). https://doi.org/10.1038/nphoton.2017.76

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.76

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing