Enlargement of optical Schrödinger's cat states

Journal name:
Nature Photonics
Volume:
11,
Pages:
379–382
Year published:
DOI:
doi:10.1038/nphoton.2017.57
Received
Accepted
Published online

Abstract

Superpositions of macroscopically distinct quantum states, introduced in Schrödinger's famous Gedankenexperiment, are an epitome of quantum ‘strangeness’ and a natural tool for determining the validity limits of quantum physics. The optical incarnation of Schrödinger's cat (SC)—the superposition of two opposite-amplitude coherent states—is also the backbone of continuous-variable quantum information processing. However, the existing preparation methods limit the amplitudes of the component coherent states, which curtails the state's usefulness for fundamental and practical applications. Here, we convert a pair of negative squeezed SC states of amplitude 1.15 to a single positive SC state of amplitude 1.85 with a success probability of ∼0.2. The protocol consists in bringing the initial states into interference on a beamsplitter and a subsequent heralding quadrature measurement in one of the output channels. Our technique can be realized iteratively, so arbitrarily high amplitudes can, in principle, be reached.

At a glance

Figures

  1. Scheme of the experiment.
    Figure 1: Scheme of the experiment.

    A squeezed vacuum state is generated in each input channel via degenerate parametric downconversion (PPKTP). A small portion of the photon flux from each squeezer is directed to a SPCM; preparation of the two initial negative SC states is heralded by simultaneous clicks of SPCMs 1 and 2. The resulting SC states interfere on a 50:50 beamsplitter (BS). Optical homodyne tomography of the state in output mode 1 of the BS is performed, conditioned on the near-zero result of the position quadrature measurement in output mode 2. LO, local oscillator; PZT, piezoelectric transducer.

  2. Wigner functions of the initial and amplified SC states.
    Figure 2: Wigner functions of the initial and amplified SC states.

    a, Experimental reconstruction via homodyne tomography corrected for the total quantum efficiency of 62%. Left insets: Wigner functions reconstructed without efficiency corrections. X and P denote the position and momentum quadratures, respectively. Right insets: absolute values of density matrices ρmn in the Fock basis reconstructed with efficiency correction. b, Best fit with the ideal squeezed SC state. Left (right): initial (amplified) SC state. The best-fit state is |SC[1.15]〉 (|SC+[1.85]〉) squeezed by 1.74 dB (3.04 dB). The fidelity between the theoretical and experimental (corrected) states is 84% (77%).

References

  1. Schrödinger, E. Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807812 (1935).
  2. Haroche, S. Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 10831102 (2013).
  3. Wineland, D. J. Nobel lecture: superposition, entanglement, and raising Schrödinger's cat. Rev. Mod. Phys. 85, 11031114 (2013).
  4. Markus, A. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271277 (2014).
  5. Leonhardt, U. Measuring Quantum States of Light (Cambridge Univ. Press, 1997).
  6. Leggett, A. J. Testing the limits of quantum mechanics: motivation, state of play, prospects. J. Phys. Condens. Matter 14, R415R451 (2002).
  7. Lvovsky, A. I., Ghobadi, R., Chandra, A., Prasad, A. S. & Simon, C. Observation of micro–macro entanglement of light. Nat. Phys. 9, 541544 (2013).
  8. Ralph, T. C., Gilchrist, A., Milburn, G. J., Munro, W. J. & Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003).
  9. Lund, A. P., Ralph, T. C. & Haselgrove, H. L. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2007).
  10. Joo, J., Munro, W. J. & Spiller, T. P. Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011).
  11. Facon, A. et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state. Nature 535, 262265 (2016).
  12. Lee, S.-W. & Jeong, H. Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. Lett. 87, 022326 (2012).
  13. Sangouard, N. et al. Quantum repeaters with entangled coherent states. J. Opt. Soc. Am. B 27, A137A145 (2010).
  14. Brask, J. B., Rigas, I., Polzik, E. S., Andersen, U. L. & Sørensen, A. S. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105, 160501 (2010).
  15. Huang, K. et al. Optical synthesis of large-amplitude squeezed coherent-state superpositions with minimal resource. Phys. Rev. Lett. 115, 023602 (2015).
  16. Ulanov, A. E., Fedorov, I. A., Sychev, D., Grangier, P. & Lvovsky, A. I. Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong–Ou–Mandel effect. Nat. Commun. 7, 11925 (2016).
  17. Bimbard, E., Jain, N., MacRae, A. & Lvovsky, A. I. Quantum-optical state engineering up to the two-photon level. Nat. Photon. 4, 243247 (2010).
  18. Yukawa, M. et al. Generating superposition of up-to three photons for continuous variable quantum information processing. Opt. Express 21, 55295535 (2013).
  19. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 8386 (2006).
  20. Neergaard-Nielsen, J. S., Melholt Nielsen, B., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).
  21. Wakui, K., Takahashi, H., Furusawa, A. & Sasaki, M. Photon subtracted squeezed states generated with periodically poled KTiOPO4. Opt. Express 15, 35683574 (2007).
  22. Ourjoumtsev, A., Ferreyrol, F., Tualle-Brouri, R. & Grangier, P. Preparation of non-local superpositions of quasi-classical light states. Nat. Phys. 5, 189192 (2009).
  23. Gerrits, T. et al. Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum. Phys. Rev. A 82, 031802(R) (2010).
  24. Takahashi, H. et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. Lett. 101, 233605 (2008).
  25. Dong, R. et al. Generation of picosecond pulsed coherent state superpositions. J. Opt. Soc. Am. B 31, 11921201 (2014).
  26. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical Schrödinger cats from photon number states. Nature 448, 17841786 (2007).
  27. Etesse, J., Bouillard, M., Kanseri, B. & Tualle-Brouri, R. Experimental generation of squeezed cat states with an operation allowing iterative growth. Phys. Rev. Lett. 114, 193602 (2015).
  28. Laghaout, A. et al. Amplification of realistic Schrödinger-cat-state-like states by homodyne heralding. Phys. Rev. A 87, 043826 (2013).
  29. Lund, A. P., Jeong, H., Ralph, T. C. & Kim, M. S. Conditional production of superpositions of coherent states with inefficient photon detection. Phys. Rev. A 70, 020101 (2004).
  30. Dakna, M., Anhut, T., Opatrny, T., Knöll, L. & Welsch, D.-G. Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 31843194 (1997).
  31. Lvovsky, A. I. & Raymer, M. G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299332 (2009).
  32. Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B 6, S556S559 (2004).
  33. Lee, C. W. & Jeong, H. Quantification of macroscopic quantum superpositions within phase space. Phys. Rev. Lett. 106, 220401 (2011).
  34. Deléglis, S. et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510515 (2008).
  35. Vlastakis, B. et al. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 607610 (2013).
  36. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).
  37. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340345 (2016).
  38. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706714 (2009).
  39. Fedorov, I. A., Ulanov, A. E., Kurochkin, Y. & Lvovsky, A. I. Synthesis of the Einstein–Podolsky–Rosen entanglement in a sequence of two single-mode squeezers. Opt. Lett. 42, 132134 (2017).
  40. Berry, D. W. & Lvovsky, A. I. Linear-optical processing cannot increase photon efficiency. Phys. Rev. Lett. 105, 203601 (2010).
  41. Kumar, R. et al. Versatile wideband balanced detector for quantum optical homodyne tomography. Opt. Commun. 285, 52595267 (2012).

Download references

Author information

  1. These authors contributed equally to the work.

    • Demid V. Sychev,
    • Alexander E. Ulanov &
    • Ilya A. Fedorov

Affiliations

  1. International Center for Quantum Optics and Quantum Technologies (Russian Quantum Center), Skolkovo, Moscow 143025, Russia

    • Demid V. Sychev,
    • Alexander E. Ulanov,
    • Anastasia A. Pushkina,
    • Ilya A. Fedorov &
    • Alexander I. Lvovsky
  2. Moscow State Pedagogical University, Department of Theoretical Physics, M. Pirogovskaya Str. 29, Moscow 119991 Russia

    • Demid V. Sychev
  3. Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia

    • Alexander E. Ulanov
  4. Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta T2N 1N4, Canada

    • Anastasia A. Pushkina,
    • Matthew W. Richards &
    • Alexander I. Lvovsky
  5. P. N. Lebedev Physics Institute, Leninsky Prospect 53, Moscow 119991, Russia

    • Ilya A. Fedorov &
    • Alexander I. Lvovsky
  6. Canadian Institute for Advanced Research, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada

    • Alexander I. Lvovsky

Contributions

All the authors participated in the conception and planning of the project, theoretical analysis and writing of the paper. The experiment was performed by D.V.S., A.E.U., A.A.P., I.A.F. and M.W.R. The data were analysed by D.V.S., A.E.U., I.A.F. and A.I.L.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Additional data