Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging

Abstract

The monolithic integration of new optoelectronic materials with well-established inexpensive silicon circuitry is leading to new applications, functionality and simple readouts. Here, we show that single crystals of hybrid perovskites can be integrated onto virtually any substrates, including silicon wafers, through facile, low-temperature, solution-processed molecular bonding. The brominated (3-aminopropyl)triethoxysilane molecule binds the native oxide of silicon and participates in the perovskite crystal with its ammonium bromide group, yielding a solid mechanical and electrical connection. The dipole of the bonding molecule reduces device noise while retaining signal intensity. The reduction of dark current enables the detectors to be operated at increased bias, resulting in a sensitivity of 2.1 × 104 µC Gyair−1 cm−2 under 8 keV X-ray radiation, which is over a thousand times higher than the sensitivity of amorphous selenium detectors. X-ray imaging with both perovskite pixel detectors and linear array detectors reduces the total dose by 15–120-fold compared with state-of-the-art X-ray imaging systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and morphology of the Si-integrated MAPbBr3 single crystals.
Figure 2: Properties of the interfacial connection in the Si-integrated MAPbBr3 single crystal device.
Figure 3: Superior photodetection performance of the Si-integrated MAPbBr3 single crystal device.
Figure 4: X-ray detection and imaging performance.

Similar content being viewed by others

References

  1. Barber, H. B. et al. Semiconductor pixel detectors for gamma-ray imaging in nuclear medicine. Nucl. Instrum. Methods Phys. Res. A 395, 421–428 (1997).

    Article  ADS  Google Scholar 

  2. Kasap, S. et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011).

    Article  Google Scholar 

  3. Parker, S. I., Kenney, C. J. & Segal, J. 3D—A proposed new architecture for solid-state radiation detectors. Nucl. Instrum. Methods Phys. Res. A 395, 328–343 (1997).

    Article  ADS  Google Scholar 

  4. Luke, P. N., Rossington, C. S. & Wesela, M. F. Low energy X-ray response of Ge detectors with amorphous Ge entrance contacts. IEEE Trans. Nucl. Sci. 41, 1074–1079 (1994).

    Article  ADS  Google Scholar 

  5. Szeles, C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi B 241, 783–790 (2004).

    Article  ADS  Google Scholar 

  6. Jeong, M., Jo, W. J., Kim, H. S. & Ha, J. H. Radiation hardness characteristics of Si-PIN radiation detectors. Nucl. Instrum. Methods Phys. Res. A 784, 119–123 (2015).

    Article  ADS  Google Scholar 

  7. Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

    Article  Google Scholar 

  8. Zhao, W. & Rowlands, J. A. X-ray imaging using amorphous selenium: feasibility of a flat panel self-scanned detector for digital radiology. Med. Phys. 22, 1595–1604 (1995).

    Article  Google Scholar 

  9. Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  10. Hu, M. et al. Distinct exciton dissociation behavior of organolead trihalide perovskite and excitonic semiconductors studied in the same system. Small 11, 2164–2169 (2015).

    Article  Google Scholar 

  11. Huang, J., Shao, Y. & Dong, Q. Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond? J. Phys. Chem. Lett. 6, 3218–3227 (2015).

    Article  Google Scholar 

  12. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  ADS  Google Scholar 

  13. Lin, Q. et al. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106–112 (2014).

    Article  ADS  Google Scholar 

  14. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  ADS  Google Scholar 

  15. Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).

    Article  ADS  Google Scholar 

  16. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  17. Yang, Y. et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 6, 7961 (2015).

    Article  ADS  Google Scholar 

  18. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  ADS  Google Scholar 

  19. Fang, Y. et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    Article  ADS  Google Scholar 

  20. Chen, Q. et al. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015).

    Article  Google Scholar 

  21. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    Article  ADS  Google Scholar 

  22. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photon. 9, 444–449 (2015).

    Article  ADS  Google Scholar 

  23. Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 10, 585–589 (2016).

    Article  ADS  Google Scholar 

  24. Wang, G. et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 1, e1500613 (2015).

    Article  ADS  Google Scholar 

  25. Dou, L. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    Article  ADS  Google Scholar 

  26. Miyazaki, N., Kuroda, Y. & Sakaguchi, M. Dislocation density analyses of GaAs bulk single crystal during growth process (effects of crystal anisotropy). J. Cryst. Growth 218, 221–231 (2000).

    Article  ADS  Google Scholar 

  27. Moram, M. A. et al. Young's modulus, Poisson's ratio, and residual stress and strain in (111)-oriented scandium nitride thin films on silicon. J. Appl. Phys. 100, 023514 (2006).

    Article  ADS  Google Scholar 

  28. Wang, J., Huang, Q.-A. & Yu, H. Size and temperature dependence of Young's modulus of a silicon nano-plate. J. Phys. D 41, 165406 (2008).

    Article  ADS  Google Scholar 

  29. Hopcroft, M. A., Nix, W. D. & Kenny, T. W. What is the Young's modulus of silicon? J. Microelectromech. Syst. 19, 229–238 (2010).

    Article  Google Scholar 

  30. Lim, P. H., Park, S., Ishikawa, Y. & Wada, K. Enhanced direct bandgap emission in germanium by micromechanical strain engineering. Opt. Express 17, 16358–16365 (2009).

    Article  ADS  Google Scholar 

  31. Wright, A. F. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J. Appl. Phys. 82, 2833–2839 (1997).

    Article  ADS  Google Scholar 

  32. Ning, Z. et al. Quantum-dot-in-perovskite solids. Nature 523, 324–328 (2015).

    Article  ADS  Google Scholar 

  33. Androulakis, J. et al. Dimensional reduction: a design tool for new radiation detection materials. Adv. Mater. 23, 4163–4167 (2011).

    Article  Google Scholar 

  34. Hecht, K. Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen. Z. Phys. 77, 235–245 (1932).

  35. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  ADS  Google Scholar 

  36. Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D 33, 2853–2865 (2000).

    Article  ADS  Google Scholar 

  37. Currie, L. A. Limits for qualitative detection and quantitative determination. application to radiochemistry. Anal. Chem. 40, 586–593 (1968).

    Article  Google Scholar 

  38. Büchele, P. et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photon. 9, 843–848 (2015).

    Article  ADS  Google Scholar 

  39. Akinlade, B. I., Farai, I. P., Okunade, A. A. Survey of dose area product received by patients undergoing common radiological examinations in four centers in Nigeria. J. Appl. Clin. Med. Phys. 13, 188–196 (2012).

  40. Kirac, S. F. E. (ed.) Advances in the Diagnosis of Coronary Atherosclerosis (InTech, 2011).

    Book  Google Scholar 

  41. Davies, A. G. et al. Do flat detector cardiac X-ray systems convey advantages over image-intensifier-based systems? Study comparing X-ray dose and image quality. Eur. Radiol. 17, 1787–1794 (2007).

    Article  Google Scholar 

  42. Viggiano, A. et al. Exposure reduction by optimization of the imaging toolchain in pulmonary vein isolation. Eur. Heart J. 34(Suppl 1), P2344 (2013).

    Article  Google Scholar 

  43. Ector, J. et al. Obesity is a major determinant of radiation dose in patients undergoing pulmonary vein isolation for atrial fibrillation. J. Am. Coll. Cardiol. 50, 234–242 (2007).

    Article  Google Scholar 

  44. Nof, E. et al. Reducing radiation exposure in the electrophysiology laboratory: it is more than just fluoroscopy times! Pacing. Clin. Electrophysiol. 38, 136–145 (2015).

    Article  Google Scholar 

  45. Davies, A. G. et al. X-ray dose reduction in fluoroscopically guided electrophysiology procedures. Pacing. Clin. Electrophysiol. 29, 262–271 (2006).

    Article  Google Scholar 

  46. Pantos, I., Patatoukas, G., Katritsis, D. G. & Efstathopoulos, E. Patient radiation doses in interventional cardiology procedures. Curr. Cardiol. Rev. 5, 1–11 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This X-ray detector development and characterization work was financially supported by the Defense Threat Reduction Agency under award no. HDTRA1-14-1-0030. The KPFM study was supported financially by the National Science Foundation under awards DMR-1505535 and DMR-1420645. The authors thank S. Banerjee and D. Haden for discussions regarding X-ray dose rate calibration, and S. Valloppilly for his assistance in using the X-ray source in the XRD system (Rigaku Multiflex) for X-ray imaging.

Author information

Authors and Affiliations

Authors

Contributions

J.H. conceived and supervised the project. W.W. synthesized materials and fabricated the devices. Y.Z. and W.W. conducted the X-ray imaging measurements. H.W. measured the photodetector performance. Q.X. and L.C. measured the device performance under 50 keV X-ray radiation. Y.F. performed the photoluminescence lifetime measurement. T.L. and A.G. performed the KPFM measurement. Y.D. conducted SEM and XRD experiments. Q.W. carried out the TEM measurement. All authors analysed the data. J.H. wrote the manuscript and all authors reviewed the manuscript.

Corresponding author

Correspondence to Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 764 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Zhang, Y., Xu, Q. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photon 11, 315–321 (2017). https://doi.org/10.1038/nphoton.2017.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing