Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Near-zero refractive index photonics

An Erratum to this article was published on 04 April 2017

This article has been updated

Abstract

Structures with near-zero parameters (for example, media with near-zero relative permittivity and/or relative permeability, and thus a near-zero refractive index) exhibit a number of unique features, such as the decoupling of spatial and temporal field variations, which enable the exploration of qualitatively different wave dynamics. This Review summarizes the underlying principles and salient features, physical realizations and technological potential of these structures. In doing so, we revisit their distinctive impact on multiple optical processes, including scattering, guiding, trapping and emission of light. Their role in emphasizing secondary responses of matter such as nonlinear, non-reciprocal and non-local effects is also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tunnelling through distorted channels.
Figure 2: Highly directive emission and geometry-invariant phenomena.
Figure 3: Nonlinear phenomena in structures with near-zero parameters.
Figure 4: Different realizations of structures with near-zero parameters.

Similar content being viewed by others

Change history

  • 06 March 2017

    Owing to technical problems, this Review Article was published online later than the date given in the print version. The published date should read '1 March 2017', and is correct in the online versions.

References

  1. Engheta, N. & Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

    Google Scholar 

  2. Eleftheriades, G. V. & Balmain, K. G. Negative-Refraction Metamaterials: Fundamental Principles and Applications (Wiley, 2005).

    Google Scholar 

  3. Cai, W. & Shalaev, V. M. Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

    Google Scholar 

  4. Ziolkowski, R. W. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004).

    ADS  Google Scholar 

  5. Silveirinha, M. G. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    ADS  Google Scholar 

  6. Engheta, N. Pursuing near-zero response. Science 340, 286–287 (2013).

    ADS  Google Scholar 

  7. Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N. & Vincent, P. A metamaterial for directive emission. Phys. Rev. Lett. 89, 213902 (2002).

    ADS  Google Scholar 

  8. Graciá-Salgado, R., García-Chocano, V. M., Torrent, D. & Sánchez-Dehesa, J. Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: design and applications. Phys. Rev. B 88, 224305 (2013).

    ADS  Google Scholar 

  9. Wei, Q., Cheng, Y. & Liu, X. J. Acoustic total transmission and total reflection in zero-index metamaterials with defects. Appl. Phys. Lett. 102, 174104 (2013).

    ADS  Google Scholar 

  10. Fleury, R. & Alù, A. Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys. Rev. Lett. 111, 055501 (2013).

    ADS  Google Scholar 

  11. Gu, Y., Cheng, Y., Wang, J. & Liu, X. Controlling sound transmission with density-near-zero acoustic membrane network. J. Appl. Phys. 118, 024505 (2015).

    ADS  Google Scholar 

  12. Silveirinha, M. G. & Engheta, N. Metamaterial-inspired model for electron waves in bulk semiconductors. Phys. Rev. B 86, 245302 (2012).

    ADS  Google Scholar 

  13. Silveirinha, M. G. & Engheta, N. Spatial delocalization and perfect tunneling of matter waves: electron perfect lens. Phys. Rev. Lett. 110, 213902 (2013).

    ADS  Google Scholar 

  14. Fleury, R. & Alù, A. Manipulation of electron flow using near-zero index semiconductor metamaterials. Phys. Rev. B 90, 035138 (2014).

    ADS  Google Scholar 

  15. Silveirinha, M. G. & Engheta, N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials. Phys. Rev. B 76, 245109 (2007).

    ADS  Google Scholar 

  16. Edwards, B., Alù, A., Young, M. E., Silveirinha, M. G. & Engheta, N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008).

    ADS  Google Scholar 

  17. Edwards, B., Alù, A., Silveirinha, M. G. & Engheta, N. Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects. J. Appl. Phys. 105, 044905 (2009).

    ADS  Google Scholar 

  18. Alù, A., Silveirinha, M. G. & Engheta, N. Transmission-line analysis of ε-near-zero-filled narrow channels. Phys. Rev. E 78, 016604 (2008).

    ADS  Google Scholar 

  19. Marcos, J. S., Silveirinha, M. G. & Engheta, N. μ-near-zero supercoupling. Phys. Rev. B 91, 195112 (2015).

    ADS  Google Scholar 

  20. Mahmoud, A. M. & Engheta, N. Wave–matter interactions in epsilon-and-mu-near-zero structures. Nat. Commun. 5, 5638 (2014).

    ADS  Google Scholar 

  21. Silveirinha, M. G. & Engheta, N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys. Rev. B 75, 075119 (2007).

    ADS  Google Scholar 

  22. Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011).

    ADS  Google Scholar 

  23. Nguyen, V. C., Chen, L. & Halterman, K. Total transmission and total reflection by zero index metamaterials with defects. Phys. Rev. Lett. 105, 233908 (2010).

    ADS  Google Scholar 

  24. Hao, J., Yan, W. & Qiu, M. Super-reflection and cloaking based on zero index metamaterial. Appl. Phys. Lett. 96, 101109 (2010).

    ADS  Google Scholar 

  25. Alù, A., Silveirinha, M. G., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

    ADS  Google Scholar 

  26. Navarro-Cía, M., Beruete, M., Campillo, I. & Sorolla, M. Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission. Phys. Rev. B 83, 115112 (2011).

    ADS  Google Scholar 

  27. Navarro-Cía, M., Beruete, M., Sorolla, M. & Engheta, N. Lensing system and Fourier transformation using epsilon-near-zero metamaterials. Phys. Rev. B 86, 165130 (2012).

    ADS  Google Scholar 

  28. Torres, V. et al. Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle. IEEE Trans. Antennas Propag. 63, 231–239 (2015).

    MathSciNet  ADS  MATH  Google Scholar 

  29. Pacheco-Peña, V. et al. Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna. Appl. Phys. Lett. 105, 243503 (2014).

    ADS  Google Scholar 

  30. Soric, J. C. & Alù, A. Longitudinally independent matching and arbitrary wave patterning using ε-near-zero channels. IEEE Trans. Microw. Theory Tech. 63, 3558–3567 (2015).

    ADS  Google Scholar 

  31. Alù, A. & Engheta, N. Boosting molecular fluorescence with a plasmonic nanolauncher. Phys. Rev. Lett. 103, 043902 (2009).

    ADS  Google Scholar 

  32. Fleury, R. & Alù, A. Enhanced superradiance in epsilon-near-zero plasmonic channels. Phys. Rev. B 87, 201101 (2013).

    ADS  Google Scholar 

  33. Sokhoyan, R. & Atwater, H. A. Quantum optical properties of a dipole emitter coupled to an ε-near-zero nanoscale waveguide. Opt. Express 21, 32279–32290 (2013).

    ADS  Google Scholar 

  34. Sokhoyan, R. & Atwater, H. A. Cooperative behavior of quantum dipole emitters coupled to a zero-index nanoscale waveguide. Preprint at http://arxiv.org/abs/1510.07071 (2015).

  35. Liberal, I. & Engheta, N. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities. Sci. Adv. 2, e1600987 (2016).

    ADS  Google Scholar 

  36. Vesseur, E. J. R., Coenen, T., Caglayan, H., Engheta, N. & Polman, A. Experimental verification of n = 0 structures for visible light. Phys. Rev. Lett. 110, 013902 (2013).

    ADS  Google Scholar 

  37. Alù, A. & Engheta, N. Coaxial-to-waveguide matching with ε-near-zero ultranarrow channels and bends. IEEE Trans. Antennas Propag. 58, 328–339 (2010).

    ADS  Google Scholar 

  38. Soric, J. C., Engheta, N., Maci, S. & Alù, A. Omnidirectional metamaterial antennas based on ε-near-zero channel matching. IEEE Trans. Antennas Propag. 61, 33–44 (2013).

    ADS  Google Scholar 

  39. Shahmoon, E. & Kurizki, G. Nonradiative interaction and entanglement between distant atoms. Phys. Rev. A 87, 033831 (2013).

    ADS  Google Scholar 

  40. Engheta, N., Salandrino, A. & Alù, A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 095504 (2005).

    ADS  Google Scholar 

  41. Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

    ADS  Google Scholar 

  42. Alù, A. & Engheta, N. All optical metamaterial circuit board at the nanoscale. Phys. Rev. Lett. 103, 143902 (2009).

    ADS  Google Scholar 

  43. Alù, A. & Engheta, N. Optical 'shorting wires'. Opt. Express 15, 13773–13782 (2007).

    ADS  Google Scholar 

  44. Edwards, B. & Engheta, N. Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry. Phys. Rev. Lett. 108, 193902 (2012).

    ADS  Google Scholar 

  45. Li, Y., Liberal, I., Della Giovampaola, C. & Engheta, N. Waveguide metatronics: lumped circuitry based on structural dispersion. Sci. Adv. 2, e1501790 (2016).

    ADS  Google Scholar 

  46. Liu, R., Roberts, C. M., Zhong, Y., Podolskiy, V. A. & Wasserman, D. Epsilon-near-zero photonics wires. ACS Photon. 3, 1045–1052 (2016).

    Google Scholar 

  47. Rodríguez-Fortuño, F. J., Vakil, A. & Engheta, N. Electric levitation using epsilon-near-zero metamaterials. Phys. Rev. Lett. 112, 033902 (2014).

    ADS  Google Scholar 

  48. Lindell, I. V & Sihvola, A. H. Electromagnetic boundary and its realization with anisotropic metamaterial. Phys. Rev. E 79, 026604 (2009).

    ADS  Google Scholar 

  49. Rumsey, V. Some new forms of Huygens' principle. IRE Trans. Antennas Propag. 7, 103–116 (1959).

    ADS  Google Scholar 

  50. Yaghjian, A. D. & Maci, S. Alternative derivation of electromagnetic cloaks and concentrators. New J. Phys. 10, 115022 (2008).

    ADS  Google Scholar 

  51. von Neumann, J. & Wigner, E. Über merkwürdige diskrete eigenwerte. Phys. Z. 30, 465–467 (1929).

    MATH  Google Scholar 

  52. Capasso, F. et al. Observation of an electronic bound state above a potential well. Nature 358, 565–567 (1992).

    ADS  Google Scholar 

  53. Devaney, A. J. & Wolf, E. Radiating and nonradiating classical current distributions and the fields they generate. Phys. Rev. D 8, 1044–1047 (1973).

    ADS  Google Scholar 

  54. Marengo, E. A. & Ziolkowski, R. W. On the radiating and nonradiating components of scalar, electromagnetic and weak gravitational sources. Phys. Rev. Lett. 83, 3345–3349 (1999).

    ADS  Google Scholar 

  55. Marinica, D. C., Borisov, A. G. & Shabanov, S. V. Bound states in the continuum in photonics. Phys. Rev. Lett. 100, 183902 (2008).

    ADS  Google Scholar 

  56. Lee, J. et al. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett. 109, 067401 (2012).

    ADS  Google Scholar 

  57. Erentok, A. & Ziolkowski, R. W. A hybrid optimization method to analyze metamaterial-based electrically small antennas. IEEE Trans. Antennas Propag. 55, 731–741 (2007).

    ADS  Google Scholar 

  58. Silveirinha, M. G. Trapping light in open plasmonic nanostructures. Phys. Rev. A 89, 023813 (2014).

    ADS  Google Scholar 

  59. Monticone, F. & Alù, A. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett. 112, 213903 (2014).

    ADS  Google Scholar 

  60. Lannebère, S. & Silveirinha, M. G. Optical meta-atom for localization of light with quantized energy. Nat. Commun. 6, 8766 (2015).

    ADS  Google Scholar 

  61. Liberal, I., Mahmoud, A. M. & Engheta, N. Geometry-invariant resonant cavities. Nat. Commun. 7, 10989 (2016).

    ADS  Google Scholar 

  62. Boyd, R. W. Nonlinear Optics (Academic, 2003).

    Google Scholar 

  63. Shen, Y. R. The Principles of Nonlinear Optics (Wiley, 1984).

    Google Scholar 

  64. Suchowski, H. et al. Phase mismatch—free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).

    ADS  Google Scholar 

  65. Mattiucci, N., Bloemer, M. J. & D'Aguanno, G. Phase-matched second harmonic generation at the Dirac point of a 2-D photonic crystal. Opt. Express 22, 6381–6390 (2014).

    ADS  Google Scholar 

  66. Powell, D. A. et al. Nonlinear control of tunneling through an epsilon-near-zero channel. Phys. Rev. B 79, 245135 (2009).

    ADS  Google Scholar 

  67. Argyropoulos, C., Chen, P. Y., D'Aguanno, G., Engheta, N. & Alù, A. Boosting optical nonlinearities in ε-near-zero plasmonic channels. Phys. Rev. B 85, 045129 (2012).

    ADS  Google Scholar 

  68. Argyropoulos, C., D'Aguanno, G. & Alù, A. Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial. Phys. Rev. B 89, 235401 (2014).

    ADS  Google Scholar 

  69. Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Opt. Lett. 40, 1500–1503 (2015).

    ADS  Google Scholar 

  70. Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photon. 2, 1584–1591 (2015).

    Google Scholar 

  71. Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016).

    ADS  Google Scholar 

  72. Caspani, L. et al. Enhanced nonlinear refractive index in ε-near-zero materials. Phys. Rev. Lett. 116, 233901 (2016).

    ADS  Google Scholar 

  73. Vincenti, M. A., De Ceglia, D., Ciattoni, A. & Scalora, M. Singularity-driven second- and third-harmonic generation at epsilon-near-zero crossing points. Phys. Rev. A 84, 063826 (2011).

    ADS  Google Scholar 

  74. Vassant, S., Hugonin, J.-P., Marquier, F. & Greffet, J.-J. Berreman mode and epsilon near zero mode. Opt. Express 20, 23971–23977 (2012).

    ADS  Google Scholar 

  75. Vassant, S. et al. Epsilon-near-zero mode for active optoelectronic devices. Phys. Rev. Lett. 109, 237401 (2012).

    ADS  Google Scholar 

  76. Campione, S., Brener, I. & Marquier, F. Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B 91, 121408(R) (2015).

    ADS  Google Scholar 

  77. Jun, Y. C. et al. Epsilon-near-zero strong coupling in metamaterial–semiconductor hybrid structures. Nano Lett. 13, 5391–5396 (2013).

    ADS  Google Scholar 

  78. Campione, S. et al. Epsilon-near-zero modes for tailored light–matter interaction. Phys. Rev. Appl. 4, 044011 (2015).

    ADS  Google Scholar 

  79. Molesky, S., Dewalt, C. J. & Jacob, Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express 21, A96–A110 (2013).

    ADS  Google Scholar 

  80. Ciattoni, A., Marini, A., Rizza, C., Scalora, M. & Biancalana, F. Polariton excitation in epsilon-near-zero slabs: transient trapping of slow light. Phys. Rev. A 87, 053853 (2013).

    ADS  Google Scholar 

  81. Ciattoni, A., Rizza, C. & Palange, E. Extreme nonlinear electrodynamics in metamaterials with very small linear dielectric permittivity. Phys. Rev. A 81, 043839 (2010).

    ADS  Google Scholar 

  82. Krauss, T. F. Why do we need slow light? Nat. Photon. 2, 448–450 (2008).

    ADS  Google Scholar 

  83. Boyd, R. W. Slow and fast light: fundamentals and applications. J. Mod. Opt. 56, 1908–1915 (2009).

    ADS  MATH  Google Scholar 

  84. Rizza, C., Ciattoni, A. & Palange, E. Two-peaked and flat-top perfect bright solitons in nonlinear metamaterials with epsilon near zero. Phys. Rev. A 83, 053805 (2011).

    ADS  Google Scholar 

  85. Marini, A. & Garcia de Abajo, F. J. Self-organization of frozen light in near-zero-index media with cubic nonlinearity. Sci. Rep. 6, 20088 (2016).

    ADS  Google Scholar 

  86. Tretyakov, S. A., Nefedov, I. S., Sihvola, A. H., Maslovski, S. & Simovski, C. R. Waves and energy in chiral nihility. J. Electromagn. Waves Appl. 17, 695–706 (2003).

    Google Scholar 

  87. Davoyan, A. R. & Engheta, N. Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity. Phys. Rev. Lett. 111, 257401 (2013).

    ADS  Google Scholar 

  88. Haldane, F. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    ADS  Google Scholar 

  89. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  Google Scholar 

  90. Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Google Scholar 

  91. Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Self-localized states in photonic topological insulators. Phys. Rev. Lett. 111, 243905 (2013).

    ADS  Google Scholar 

  92. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    ADS  Google Scholar 

  93. Davoyan, A. R., Mahmoud, A. & Engheta, N. Optical isolation with epsilon-near-zero metamaterials. Opt. Express 21, 3279–3286 (2013).

    ADS  Google Scholar 

  94. Belov, P. A. et al. Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B 67, 113103 (2003).

    ADS  Google Scholar 

  95. Pollard, R. J. et al. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 102, 127405 (2009).

    ADS  Google Scholar 

  96. Krishnamoorthy, H. N. S., Jacob, Z., Narimanov, E. E., Kretzschmar, I. & Menon, V. M. Topological transitions in metamaterials. Science 336, 205–209 (2012).

    MathSciNet  ADS  MATH  Google Scholar 

  97. Smith, D. R., Schurig, D., Mock, J. J., Kolinko, P. & Rye, P. Partial focusing of radiation by a slab of indefinite media. Appl. Phys. Lett. 84, 2244–2246 (2004).

    ADS  Google Scholar 

  98. Poddubny, A. N., Iorsh, I., Belov, P. A. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 958–967 (2013).

    ADS  Google Scholar 

  99. Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007).

    ADS  Google Scholar 

  100. Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008).

    ADS  Google Scholar 

  101. Fang, A., Koschny, T. & Soukoulis, C. M. Optical anisotropic metamaterials: negative refraction and focusing. Phys. Rev. B 79, 245127 (2009).

    ADS  Google Scholar 

  102. Liu, Y., Bartal, G. & Zhang, X. All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Opt. Express 16, 15439–15448 (2008).

    ADS  Google Scholar 

  103. Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006).

    ADS  Google Scholar 

  104. Jacob, Z., Alekseyev, L. V & Narimanov, E. E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    ADS  Google Scholar 

  105. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    ADS  Google Scholar 

  106. Smolyaninov, I. I., Hung, Y. J. & Davis, C. C. Magnifying superlens in the visible frequency range. Science 315, 1699–1701 (2007).

    ADS  Google Scholar 

  107. Belov, P. A., Simovski, C. R. & Ikonen, P. M. T. Canalization of subwavelength images by electromagnetic crystals. Phys. Rev. B 71, 193105 (2005).

    ADS  Google Scholar 

  108. Belov, P. A., Hao, Y. & Sudhakaran, S. Subwavelength microwave imaging using an array of parallel conducting wires as a lens. Phys. Rev. B 73, 033108 (2006).

    ADS  Google Scholar 

  109. Anderegg, M., Feuerbacher, B. & Fitton, B. Optically excited longitudinal plasmons in potassium. Phys. Rev. Lett. 27, 1565–1568 (1971).

    ADS  Google Scholar 

  110. Spitzer, W. G., Kleinman, D. & Walsh, D. Infrared properties of hexagonal silicon carbide. Phys. Rev. 113, 127–132 (1959).

    ADS  Google Scholar 

  111. Korobkin, D., Urzhumov, Y. & Shvets, G. Enhanced near-field resolution in midinfrared using metamaterials. J. Opt. Soc. Am. B 23, 468–478 (2006).

    ADS  Google Scholar 

  112. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    Google Scholar 

  113. Kim, J. et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 3, 339–346 (2016).

    ADS  Google Scholar 

  114. Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011).

    ADS  Google Scholar 

  115. Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    Google Scholar 

  116. Kinsey, N. et al. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica 2, 616–622 (2015).

    ADS  Google Scholar 

  117. Ou, J. Y. et al. Ultraviolet and visible range plasmonics of a topological insulator. Nat. Commun. 5, 5139 (2014).

    ADS  Google Scholar 

  118. Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotech. 10, 2–6 (2015).

    ADS  Google Scholar 

  119. Brown, J. Artificial dielectrics having refractive indices less than unity. Proc. IEEE 100, 51–62 (1953).

    Google Scholar 

  120. Rotman, W. Plasma simulation by artificial dielectrics and parallel-plate media. IRE Trans. Antennas Propag. 10, 17–19 (1962).

    Google Scholar 

  121. King, R. J., Thiel, D. V. & Park, K. S. The synthesis of surface reactance using an artificial dielectric. IEEE Trans. Antennas Propag. 31, 471–476 (1983).

    ADS  Google Scholar 

  122. Della Giovampaola, C. & Engheta, N. Plasmonics without negative dielectrics. Phys. Rev. B 93, 195152 (2016).

    ADS  Google Scholar 

  123. Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    ADS  Google Scholar 

  124. Moses, C. A. & Engheta, N. Electromagnetic wave propagation in the wire medium: a complex medium with long thin inclusions. Wave Motion 34, 301–317 (2001).

    MATH  Google Scholar 

  125. Belov, P. A., Tretyakov, S. A. & Viitanen, A. Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires. J. Electromagn. Waves Appl. 16, 1153–1170 (2002).

    Google Scholar 

  126. Maslovski, S. I., Tretyakov, S. A. & Belov, P. A. Wire media with negative effective permittivity: a quasi-static model. Microw. Opt. Technol. Lett. 35, 47–51 (2002).

    Google Scholar 

  127. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 184184 (2000).

    ADS  Google Scholar 

  128. Maas, R., Parsons, J., Engheta, N. & Polman, A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photon. 7, 907–912 (2013).

    ADS  Google Scholar 

  129. Wu, Y., Li, J., Zhang, Z. Q. & Chan, C. T. Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit. Phys. Rev. B 74, 085111 (2006).

    ADS  Google Scholar 

  130. Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photon. 7, 791–795 (2013).

    ADS  Google Scholar 

  131. Li, Y. et al. On-chip zero-index metamaterials. Nat. Photon. 9, 738–742 (2015).

    ADS  Google Scholar 

  132. Li, J., Zhou, L., Chan, C. T. & Sheng, P. Photonic band gap from a stack of positive and negative index materials. Phys. Rev. Lett. 90, 083901 (2003).

    ADS  Google Scholar 

  133. Zhou, L., Song, Z., Huang, X. & Chan, C. T. Physics of the zero-n photonic gap: fundamentals and latest developments. Nanophotonics 1, 181–198 (2012).

    ADS  Google Scholar 

  134. Ziolkowski, R. W. & Heyman, E. Wave propagation in media having negative permittivity and permeability. Phys. Rev. E 64, 056625 (2001).

    ADS  Google Scholar 

  135. Javani, M. H. & Stockman, M. I. Real and imaginary properties of epsilon-near-zero materials. Phys. Rev. Lett. 117, 107404 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the US Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) award no. FA9550-12-1-0488 and in part by the AFOSR MURI award no. FA9550-14-1-0389. The authors would also like to acknowledge partial support from the Vannevar Bush Faculty Fellowship programme sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through grant N00014-16-1-2029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Engheta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liberal, I., Engheta, N. Near-zero refractive index photonics. Nature Photon 11, 149–158 (2017). https://doi.org/10.1038/nphoton.2017.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing