Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A monolithic integrated photonic microwave filter

Abstract

Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Operation principle and schematic diagram of the integrated MWP (IMWP) filter.
Figure 2: RAMZI filter simulations and experimental adjustment of the dual-drive MZM.
Figure 3: Experimental results for the tunable MWP filter (E/O).

Similar content being viewed by others

References

  1. Novak, D. et al. Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52, 1–11 (2016).

    Article  Google Scholar 

  2. Waterhouse, R. & Novak, D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16, 84–92 (2015).

    Article  Google Scholar 

  3. Won, R. Microwave photonics shines. Nat. Photon. 5, 736 (2011).

    Article  ADS  Google Scholar 

  4. Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

    Article  ADS  Google Scholar 

  5. Yao, J. Microwave photonics. J. Lightw. Technol. 27, 314–335 (2009).

    Article  ADS  Google Scholar 

  6. Andrews, J. G. et al. What will 5G be? IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).

    Article  MathSciNet  Google Scholar 

  7. Gosh, A., et al. Millimetre-wave enhanced local area systems: a high-data-rate approach for future wireless networks. IEEE J. Sel. Areas Commun. 32, 1152–1163 (2014).

    Article  Google Scholar 

  8. Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).

    Article  ADS  Google Scholar 

  9. Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics: progress in integrated microwave photonics. IEEE Microw. Mag. 16, 28–45 (2015).

    Article  Google Scholar 

  10. Mitchell, J. E. Integrated wireless backhaul over optical access networks. J. Lightw. Technol. 32, 3373–3382 (2014).

    Article  ADS  Google Scholar 

  11. Liu, C., Wang, J., Cheng, L., Zhu, M. & Chang, G.-K. Key microwave-photonics technologies for next-generation cloud-based radio access networks. J. Lightw. Technol. 32, 3452–3460 (2014).

    Article  ADS  Google Scholar 

  12. Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011).

    Article  ADS  Google Scholar 

  13. Guzzon, R., Norberg, E., Parker, J., Johansson, L. & Coldren, L. Integrated InP–InGaAsP tuneable coupled ring optical bandpass filters with zero insertion loss. Opt. Express 19, 7816–7826 (2011).

    Article  ADS  Google Scholar 

  14. Fandiño, J. S. & Muñoz, P. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach–Zehnder interferometer filter. Opt. Lett. 38, 4316–4319 (2013).

    Article  ADS  Google Scholar 

  15. Burla, M. et al. On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide Bragg grating. In IEEE International Topical Meeting on Microwave Photonics 92–95 (IEEE, 2013).

  16. Shi, W., Veerasubramanian, V., Patel, D. & Plant, D. Tuneable nanophotonic delay lines using linearly chirped contradirectioinal couplers with uniform Bragg gratings. Opt. Lett. 39, 701–703 (2014).

    Article  ADS  Google Scholar 

  17. Guan, B. et al. CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014).

    Article  ADS  Google Scholar 

  18. Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2010).

    Article  ADS  Google Scholar 

  19. Pagani, M. et al. Instantaneous frequency measurement system using four-wave mixing in an ultra-compact long silicon waveguide. In Proc. 41st European Conf. on Optical Communication (ECOC) 1–3 (IEEE, 2015).

  20. Khilo, A. et al. Photonic ADC: overcoming the bottleneck of electronic jitter. Opt. Express 20, 4454–4469 (2012).

    Article  ADS  Google Scholar 

  21. Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).

    Article  ADS  Google Scholar 

  22. Marpaung, D. et al. Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection. Opt. Express 21, 23286–23294 (2013).

    Article  ADS  Google Scholar 

  23. Zhuang, L. et al. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links. Opt. Express 21, 25999–26013 (2013).

    Article  ADS  Google Scholar 

  24. Marpaung, D., Chevalier, L., Burla, M. & Roeloffzen, C. Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator. Opt. Express 19, 24838–24848 (2011).

    Article  ADS  Google Scholar 

  25. Marpaung, D. On-chip photonic-assisted instantaneous microwave frequency measurement system. IEEE Photon. Technol. Lett. 25, 837–840 (2013).

    Article  ADS  Google Scholar 

  26. Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).

    Article  ADS  Google Scholar 

  27. Tan, K. et al. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide. Opt. Express 21, 2003–2011 (2013).

    Article  ADS  Google Scholar 

  28. Pagani, M. et al. Tuneable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering. Opt. Express 22, 28810–28818 (2014).

    Article  ADS  Google Scholar 

  29. Pérez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015).

    Article  ADS  Google Scholar 

  30. Capmany, J., Gasulla, I. & Pérez, D. Microwave photonics: the programmable processor. Nat. Photon. 10, 6–8 (2016).

    Article  ADS  Google Scholar 

  31. Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).

    Article  ADS  Google Scholar 

  32. Roeloffzen, C. G. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013).

    Article  ADS  Google Scholar 

  33. Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).

    Article  ADS  Google Scholar 

  34. Madsen, C. K. & Zhao, J. H. Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

    Book  Google Scholar 

  35. Román, J., Frankel, M. Y. & Esman, R. D. Spectral characterization of fiber gratings with high resolution. Opt. Lett. 23, 939–941 (1998).

    Article  ADS  Google Scholar 

  36. Hernández, R., Loayssa, A. & Benito, D. Optical vector network analysis based on single-sideband modulation. Opt. Eng. 43, 2418–2421 (2004).

    Article  ADS  Google Scholar 

  37. Jinguji, K. & Oguma, M. Optical half-band filters. J. Lightw. Technol. 18, 252–259 (2000).

    Article  ADS  Google Scholar 

  38. Madsen, C. K. Efficient architectures for exactly realizing optical filters with optimum bandpass designs. IEEE Photon. Technol. Lett. 10, 1136–1138 (1998).

    Article  ADS  Google Scholar 

  39. Madsen, C. K. General IIR optical filter design for WDM applications using all-pass filters. J. Lightw. Technol. 18, 860–868 (2000).

    Article  ADS  Google Scholar 

  40. Smit, M. K. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014).

    ADS  Google Scholar 

  41. Besse, P. A., Gini, E., Bachmann, M. & Melchior, H. New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios. J. Lightw. Technol. 14, 2286–2293 (1996).

    Article  ADS  Google Scholar 

  42. Pérez, D. et al. Figures of merit for self-beating filtered microwave photonic systems. Opt. Express 24, 10087–10102 (2016).

    Article  ADS  Google Scholar 

  43. Zhuang, L. et al. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photon. Rev. 7, 994–1002 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Spanish Centro para el Desarrollo Tecnológico Industrial (CDTI) through the NEOTEC start-up programme, the European Commission through the 7th Research Framework Programme project, Photonic Advanced Research and Development for Integrated Generic Manufacturing (FP7-PARADIGM), the Generalitat Valenciana through the Programa para grupos de Investigación de Excelencia (PROMETEO) project code 2013/012, the Spanish Ministerio de Economía y Comercio (MINECO) via project TEC2013-42332-P, PIF4ESP, and the Universitat Politécnica de Valencia (UPVOV) through projects 10-3E-492 and 08-3E-008 funded by the Fondos Europeos de Desarrollo Regional (FEDER). J.S. Fandiño acknowledges financial support from Formación de Profesorado Universitario (FPU) grant AP2010-1595.

Author information

Authors and Affiliations

Authors

Contributions

J.C, J.S.F and P.M conceived the filter design. J.S.F. and D.D. designed the chip. J.S.F. conceived the experiments and performed the measurements. J.S.F., P.M. and J.C. analysed the data and wrote the paper. P.M and J.C managed the project.

Corresponding author

Correspondence to José Capmany.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fandiño, J., Muñoz, P., Doménech, D. et al. A monolithic integrated photonic microwave filter. Nature Photon 11, 124–129 (2017). https://doi.org/10.1038/nphoton.2016.233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing