Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution adaptive imaging of a single atom

Abstract

Optical imaging systems are used extensively in the life and physical sciences because of their ability to non-invasively capture details on the microscopic and nanoscopic scales. Such systems are often limited by source or detector noise, image distortions and human operator misjudgement. Here, we report a general, quantitative method to analyse and correct these errors. We use this method to identify and correct optical aberrations in an imaging system for single atoms and realize an atomic position sensitivity of 0.5 nm Hz−1/2 with a minimum uncertainty of 1.7 nm, allowing the direct imaging of atomic motion. This is the highest position sensitivity ever measured for an isolated atom and opens up the possibility of performing out-of-focus three-dimensional particle tracking, imaging of atoms in three-dimensional optical lattices or sensing forces at the yoctonewton (10−24 N) scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the imaging system.
Figure 2: Aberration retrieval results.
Figure 3: Measured position uncertainty δx of the trapped ion centroid position versus image integration time τ.
Figure 4: Micromotion position measurement.

Similar content being viewed by others

References

  1. Moerner, W. Nobel lecture. Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy. Rev. Mod. Phys. 87, 1183–1212 (2015).

    Article  ADS  Google Scholar 

  2. Betzig, E. Nobel lecture. Single molecules, cells, and super-resolution optics. Rev. Mod. Phys. 87, 1153–1168 (2015).

    Article  ADS  Google Scholar 

  3. Eva, R. et al. STED microscopy reveals crystal colour centres. Nature Photon. 3, 144–147 (2009).

    Article  Google Scholar 

  4. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  5. Bakr, W., Gillen, J., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    Article  ADS  Google Scholar 

  6. Blatt, R. & Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

    Article  ADS  Google Scholar 

  7. Hell, S. Nobel lecture. Nanoscopy with freely propagating light. Rev. Mod. Phys. 87, 1169–1182 (2015).

    Article  ADS  Google Scholar 

  8. Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    Article  ADS  Google Scholar 

  9. Eschner, J., Raab, Ch., Schmidt-Kaler, F. & Blatt, R. Light interference from single atoms and their mirror images. Nature 413, 495–498 (2001).

    Article  ADS  Google Scholar 

  10. Biercuk, M., Uys, H., Britton, J., VanDevender, A. & Bollinger, J. Ultrasensitive detection of force and displacement using trapped ions. Nature Nanotech. 5, 646–650 (2010).

    Article  ADS  Google Scholar 

  11. Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-Poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001).

    Article  ADS  Google Scholar 

  12. Karpa, L., Bylinskii, A., Gangloff, D., Cetina, M. & Vuletić, V. Suppression of ion transport due to long-lived subwavelength localization by an optical lattice. Phys. Rev. Lett. 111, 163002 (2013).

    Article  ADS  Google Scholar 

  13. Schmiegelow, C. et al. Phase-stable free-space optical lattices for trapped ions. Phys. Rev. Lett. 116, 033002 (2016).

    Article  ADS  Google Scholar 

  14. Alberti, A. et al. Super-resolution microscopy of single atoms in optical lattices. New J. Phys. 18, 053010 ( 2016).

    Article  ADS  Google Scholar 

  15. Noek, R. et al. High speed, high fidelity detection of an atomic hyperfine qubit. Opt. Lett. 38, 4735–4738 (2013).

    Article  ADS  Google Scholar 

  16. Burrell, A., Szwer, D., Webster, S. & Lucas, D. Scalable simultaneous multiqubit readout with 99.99% single-shot fidelity. Phys. Rev. A 81, 040302 (2010).

    Article  ADS  Google Scholar 

  17. Streed, E., Norton, B., Jechow, A., Weinhold, T. & Kielpinski, D. Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106, 010502 (2011).

    Article  ADS  Google Scholar 

  18. Shu, G., Chou, C., Kurz, N., Dietrich, M. & Blinov, B. Efficient fluorescence collection and ion imaging with the ‘tack’ ion trap. J. Opt. Soc. Am. B 28, 2865–2870 (2011).

    Article  ADS  Google Scholar 

  19. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  Google Scholar 

  20. Goodman, J. Introduction to Fourier Optics (McGraw-Hill, 1996).

    Google Scholar 

  21. Iglesias, I. Parametric wave-aberration retrieval from point-spread function data by use of a pyramidal recursive algorithm. Appl. Opt. 37, 5427–5430 (1998).

    Article  ADS  Google Scholar 

  22. Barakat, R. & Sandler, B. Determination of the wave-front aberration function from measured values of the point-spread function: a two-dimensional phase retrieval problem. J. Opt. Soc. Am. A 9, 1715–1723 (1992).

    Article  ADS  Google Scholar 

  23. Avoort, C., Braat, J., Dirksen, P. & Janssen, A. Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer–Zernike approach. J. Mod. Opt. 52, 1695–1728 (2005).

    Article  ADS  Google Scholar 

  24. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  25. Speidel, M., Jonáš, A. & Florin, E. Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt. Lett. 28, 69–71 (2003).

    Article  ADS  Google Scholar 

  26. Nelson, K., Li, X. & Weiss, D. Imaging single atoms in a three-dimensional array. Nature Phys. 3, 556–560 (2007).

    Article  ADS  Google Scholar 

  27. Riley, W. Handbook of Frequency Stability Analysis Special Publication 1065 (NIST, 2008).

    Book  Google Scholar 

  28. Barnes, J. & Allan, D. Variances Based on Data with Dead Time Between the Measurements Technical Note 1318 (NIST, 1990).

    Book  Google Scholar 

  29. Thompson, R., Larson, D. & Webb, W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    Article  Google Scholar 

  30. Quan, T., Zeng, S. & Huang, Z. Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging. J. Biomed. Opt. 15, 066005 (2010).

    Article  ADS  Google Scholar 

  31. Major, F. & Dehmelt, H. Exchange-collision technique for rf spectroscopy of stored ions. Phys. Rev. 170, 91–107 (1968).

    Article  ADS  Google Scholar 

  32. Berkeland, D., Miller, J., Bergquist, J., Itano, W. & Wineland, D. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025–5033 (1998).

    Article  ADS  Google Scholar 

  33. Keller, J., Partner, H., Burgermeister, T. & Mehlstäubler, T. Precise determination of micromotion for trapped-ion optical clocks. J. Appl. Phys. 118, 104501 (2015).

    Article  ADS  Google Scholar 

  34. Anderson, D. Alignment of resonant optical cavities. Appl. Opt. 23, 2944–2949 (1984).

    Article  ADS  Google Scholar 

  35. Wyant, J. & Creath, K. Applied Optics and Optical Engineering Vol. XI (Academic, 1992).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the US Army Research Office (ARO) with funds from the Intelligence Advanced Research Projects Activity (IARPA) Multi-Qubit Coherent Operations (MQCO) Program and the ARO Atomic and Molecular Physics Program, the Air Force Office of Scientific Research (AFOSR) Multidisciplinary Research Program of the University Research Initiative (MURI) on Quantum Measurement and Verification, the Defense Advanced Research Projects Agency (DARPA) Quiness Program, the Army Research Laboratory Center for Distributed Quantum Information, the National Science Foundation (NSF) Physics Frontier Center at the Joint Quantum Institute (JQI) and the NSF Physics at the Information Frontier Program. The authors also acknowledge support from the Imaging Core at the University of Maryland.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design, construction and carrying out of the experiment, discussed the results and commented on the manuscript. J.D.W.-C. and K.G.J. analysed the data and performed the simulations. J.D.W.-C., K.G.J. and C.M. wrote the manuscript. B.N. and J.M. contributed equally to both the design and construction of the experiment.

Corresponding author

Correspondence to J. D. Wong-Campos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong-Campos, J., Johnson, K., Neyenhuis, B. et al. High-resolution adaptive imaging of a single atom. Nature Photon 10, 606–610 (2016). https://doi.org/10.1038/nphoton.2016.136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing