Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase-locked laser arrays through global antenna mutual coupling

Abstract

Phase locking of an array of lasers is a highly effective method in beam shaping because it increases the output power and reduces the lasing threshold. Here, we show a conceptually novel phase-locking mechanism based on ‘antenna mutual coupling’ in which laser elements interact through far-field radiations with definite phase relations. This allows a long-range global coupling among the array elements to achieve a robust phase locking in two-dimensional laser arrays. The scheme is ideal for lasers with a deep subwavelength confined cavity, such as nanolasers, whose divergent beam patterns could be used to achieve a strong coupling among the elements in the array. We demonstrated experimentally such a scheme based on subwavelength short-cavity surface-emitting lasers at terahertz frequencies. More than 37 laser elements that span over 8 λo were phase locked to each other, and delivered up to 6.5 mW (in a pulsed operation) single-mode radiation at 3 THz, with a maximum 450 mW A–1 slope efficiency and a near-diffraction-limited beam divergence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutual admittance and electric-field distribution of the QCL.
Figure 2: Magnetic (H) fields inside the laser cavity and far-field beam patterns from 3D FEM simulations.
Figure 3: The laser arrays.
Figure 4: The four quadrants of the laser array.
Figure 5: Type I and Type II grids.

Similar content being viewed by others

References

  1. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    Article  ADS  Google Scholar 

  2. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  ADS  Google Scholar 

  3. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  4. Zhang, J. P. et al. Photonic-wire laser. Phys. Rev. Lett. 75, 2678–2681 (1995).

    Article  ADS  Google Scholar 

  5. Hill, M. T. & Gather, M. C. Advances in small lasers. Nature Photon. 8, 908–918 (2014).

    Article  ADS  Google Scholar 

  6. Ackley, D. E. Single longitudinal mode operation of high power multiple-stripe injection lasers. Appl. Phys. Lett. 42, 152–154 (1983).

    Article  ADS  Google Scholar 

  7. Katz, J., Maargalit, S. & Yariv, A. Diffraction coupled phase-locked semiconductor laser array. Appl. Phys. Lett. 42, 554–556 (1983).

    Article  ADS  Google Scholar 

  8. Brunner, D. & Fischer, I. Reconfigurable semiconductor laser networks based on diffractive coupling. Opt. Lett. 40, 3854–3857 (2015).

    Article  ADS  Google Scholar 

  9. Chen, K. L. & Wang, S. Single-lobe symmetric coupled laser arrays. Electron. Lett. 21, 347–349 (1985).

    Article  ADS  Google Scholar 

  10. Streifer, W., Welch, D., Cross, P. & Scifres, D. Y-junction semiconductor laser arrays. Part I—theory. IEEE J. Quantum Electron. 23, 744–751 (1987).

    Article  ADS  Google Scholar 

  11. Botez, D. & Peterson, G. Modes of phase-locked diode-laser arrays of closely spaced antiguides. Electron. Lett. 24, 1042–1044 (1988).

    Article  ADS  Google Scholar 

  12. Botez, D. High-power monolithic phase-locked arrays of antiguided semiconductor diode lasers. IEE Proc. J. 139, 14–23 (1992).

    Google Scholar 

  13. Kao, T.-Y., Hu, Q. & Reno, J. L. Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers. Appl. Phys. Lett. 96, 101106 (2010).

    Article  ADS  Google Scholar 

  14. Orlova, E. E. et al. Antenna model for wire lasers. Phys. Rev. Lett. 96, 173904 (2006).

    Article  ADS  Google Scholar 

  15. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  16. Kohler, R. et al. Terahertz semiconductor heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  17. Kumar, S. et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal–metal waveguides. Opt. Express 15, 113–128 (2007).

    Article  ADS  Google Scholar 

  18. Williams, B. S., Kumar, S., Callebaut, H., Hu, Q. & Reno, J. L. Terahertz quantum-cascade laser at λ ≈ 100 µm using metal waveguide for mode confinement. Appl. Phys. Lett. 83, 2124–2126 (2003).

    Article  ADS  Google Scholar 

  19. Balanis, C. A. Antenna Theory: Analysis and Design (John Wiley & Sons, 2012).

    Google Scholar 

  20. Derneryd, A. G. A theoretical investigation of the rectangular microstrip antenna element. IEEE Trans. Antennas Propag. 26, 532–535 (1978).

    Article  ADS  Google Scholar 

  21. Amanti, M. I., Fischer, M., Scalari, G., Beck, M. & Faist, J. Low-divergence single-mode terahertz quantum cascade laser. Nature Photon. 3, 586–590 (2009).

    Article  ADS  Google Scholar 

  22. Xu, G. et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures. Nature Commun. 3, 952 (2012).

    Article  ADS  Google Scholar 

  23. Kao, T.-Y., Cai, X., Lee, A. W., Reno, J. L. & Hu, Q. Antenna coupled photonic wire lasers. Opt. Express 23, 17091–17100 (2015).

    Article  ADS  Google Scholar 

  24. van Beijnum, F. et al. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013).

    Article  ADS  Google Scholar 

  25. Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotech. 8, 506–511 (2013).

    Article  ADS  Google Scholar 

  26. Zhang, C. et al. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array. Nano Lett. 15, 1382–1387 (2015).

    Article  ADS  Google Scholar 

  27. Dorofeenko, A. V. et al. Steady state superradiance of a 2D-spaser array. Opt. Express 21, 14539–14547 (2013).

    Article  ADS  Google Scholar 

  28. Li, S., Witjaksono, G., Macomber, S. & Botez, D. Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift. IEEE J. Sel. Top. Quantum Electron. 9, 1153–1165 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Aeronautics and Space Administration and National Science Foundation, and also performed at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Contributions

T.-Y.K. conceived the strategy, designed and fabricated the antenna mutual coupled laser arrays and performed the measurements and analysis, and J.L.R. provided the material growth. All the work was done under the supervision of Q.H.

Corresponding author

Correspondence to Qing Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 918 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, TY., Reno, J. & Hu, Q. Phase-locked laser arrays through global antenna mutual coupling. Nature Photon 10, 541–546 (2016). https://doi.org/10.1038/nphoton.2016.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing