Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequency-domain Hong–Ou–Mandel interference

Abstract

Hong–Ou–Mandel (HOM) interference is one of the most prominent features of quantum indistinguishable particles, and has been used as the core of many quantum information protocols1. Since its first observation in 19872, it has been understood as a phenomenon that occurs when two identical bosons are fed to two input ports of a beam splitter. Here, we report the observation of HOM interference exhibited by two photons with different colours3. We developed a frequency-domain beam splitter via a second-order nonlinear medium driven by strong coherent light4,5. A photon passing through the device changes its colour probabilistically. When a single pulse containing two photons with different colours was fed to the beam splitter, the pair of output photons showed a tendency to assume the same colour, with a visibility exceeding the classical limit. Combined with wavelength-division multiplexing, our results will pave the way towards the miniaturization of highly integrated optical circuits for quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency-domain HOM interferometer.
Figure 2: The count rate versus the pump power.
Figure 3: The peak value of the internal transition probability.
Figure 4: Observed frequency-domain HOM interference.

Similar content being viewed by others

References

  1. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  2. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  3. Raymer, M., van Enk, S., McKinstrie, C. & McGuinness, H. Interference of two photons of different color. Opt. Commun. 283, 747–752 (2010).

    Article  ADS  Google Scholar 

  4. Giorgi, G., Mataloni, P. & De Martini, F. Frequency hopping in quantum interferometry: efficient up-down conversion for qubits and ebits. Phys. Rev. Lett. 90, 027902 (2003).

    Article  ADS  Google Scholar 

  5. Ikuta, R. et al. Observation of two output light pulses from a partial wavelength converter preserving phase of an input light at a single-photon level. Opt. Express 21, 27865–27872 (2013).

    Article  ADS  Google Scholar 

  6. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  7. Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–308 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  8. Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nature Photon. 8, 615–620 (2014).

    Article  ADS  Google Scholar 

  9. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    Article  MathSciNet  Google Scholar 

  10. Tang, Y.-L. et al. Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2014).

    Article  ADS  Google Scholar 

  11. Guan, J.-Y. et al. Experimental passive round-robin differential phase-shift quantum key distribution. Phys. Rev. Lett. 114, 180502 (2015).

    Article  ADS  Google Scholar 

  12. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  13. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    Article  ADS  Google Scholar 

  14. Bao, X.-H. et al. Quantum teleportation between remote atomic-ensemble quantum memories. Proc Natl Acad. Sci. USA 109, 20347–20351 (2012).

    Article  ADS  Google Scholar 

  15. Teich, M., Saleh, B., Wong, F. & Shapiro, J. Variations on the theme of quantum optical coherence tomography: a review. Quantum Inf. Process. 11, 903–923 (2012).

    Article  Google Scholar 

  16. Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  17. Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon. 4, 632–635 (2010).

    Article  ADS  Google Scholar 

  18. Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).

    Article  ADS  Google Scholar 

  19. Maunz, P. et al. Quantum interference of photon pairs from two remote trapped atomic ions. Nature Phys. 3, 538–541 (2007).

    Article  ADS  Google Scholar 

  20. Sipahigil, A. et al. Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 108, 143601 (2012).

    Article  ADS  Google Scholar 

  21. Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014).

    Article  ADS  Google Scholar 

  22. Di Martino, G. et al.Observation of quantum interference in the plasmonic Hong–Ou–Mandel effect. Phys. Rev. Appl. 1, 034004 (2014).

    Article  ADS  Google Scholar 

  23. Fakonas, J. S., Lee, H., Kelaita, Y. A. & Atwater, H. A. Two-plasmon quantum interference. Nature Photon. 8, 317–320 (2014).

    Article  ADS  Google Scholar 

  24. Lopes, R. et al. Atomic Hong–Ou–Mandel experiment. Nature 520, 66–68 (2015).

    Article  ADS  Google Scholar 

  25. Toyoda, K., Hiji, R., Noguchi, A. & Urabe, S. Hong–Ou–Mandel interference of two phonons in trapped ions. Nature 527, 74–77 (2015).

    Article  ADS  Google Scholar 

  26. Shih, Y. H. & Sergienko,, A. V. Observation of quantum beating in a simple beam-splitting experiment: Two-particle entanglement in spin and space-time. Phys. Rev. A 50, 2564 (1994).

    Article  ADS  Google Scholar 

  27. Ramelow, S. Ratschbacher, L. Fedrizzi, A. Langford, N. K. & Zeilinger, A. Discrete tunable color entanglement. Phys. Rev. Lett. 103, 253601 (2009).

    Article  ADS  Google Scholar 

  28. Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116–120 (2005).

    Article  ADS  Google Scholar 

  29. Ikuta, R. et al. Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nature Commun. 2, 537 (2011).

    Article  ADS  Google Scholar 

  30. Ikuta, R. et al. High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors. Phys. Rev. A 87, 010301(R) (2013).

    Article  ADS  Google Scholar 

  31. Kumar, P. Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990).

    Article  ADS  Google Scholar 

  32. Rarity, J. G., Tapster, P. R. & Loudon, R. Non-classical interference between independent sources. J. Opt. B 7, S171 (2005).

    Article  ADS  Google Scholar 

  33. Ikuta, R. et al. Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation. Phys. Rev. A 88, 042317 (2013).

    Article  ADS  Google Scholar 

  34. Miki, S., Yamashita, T., Terai, H. & Wang, Z. High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler. Opt. Express 21, 10208–10214 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Fellows (Grant No. 14J04677) and MEXT/JSPS KAKENHI Grant Nos 25247068, 15H03704, 15KK0164 and 25286077.

Author information

Authors and Affiliations

Authors

Contributions

T.K., R.I and T.Y. designed the experiment. T.K., R.I and S.Y. carried out the experiments under supervision of T.Y., M.K. and N.I. S.M., T.Y. and H.T. developed the system of the superconducting single-photon detectors. All authors analysed the experimental results and contributed to the discussions and interpretations. T.K. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Nobuyuki Imoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, T., Ikuta, R., Yasui, S. et al. Frequency-domain Hong–Ou–Mandel interference. Nature Photon 10, 441–444 (2016). https://doi.org/10.1038/nphoton.2016.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing