Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multidimensional Purcell effect in an ytterbium-doped ring resonator

Abstract

Rare-earth ions in solids are of particular interest for quantum information storage and processing because of the long coherence times of the 4f states1. In the past few years, substantial progress has been made by using ensembles of ions2,3,4,5,6 and single ions7,8,9,10. However, the weak optical transitions within the 4f manifold pose a great challenge to the optical interaction with a single rare-earth ion on a single-photon level. Here, we demonstrate a ninefold enhanced ion–light interaction (Purcell effect11) in an integrated-optics-based, fibre-coupled silicon nitride (Si3N4) ring resonator with implanted ytterbium ions (Yb3+). We unveil the one-, two- and three-dimensional contributions to the Purcell factor as well as the temperature-dependent decoherence and depolarization of the ions. The results indicate that this cavity quantum electrodynamics (QED) system has the potential of interfacing single rare-earth ions with single photons on a chip.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibre-coupled Si3N4 ring resonator doped with Yb3+.
Figure 2: Energy level diagram of Yb3+ and experimental set-up.
Figure 3: Spontaneous emission (SE) decay traces.
Figure 4: Free-space decay rate and maximum Purcell factor.
Figure 5: Homogeneous linewidth and dipole polarization.

Similar content being viewed by others

References

  1. Fraval, E., Sellars, M. J. & Longdell, J. J. Dynamic decoherence control of a solid-state nuclear-quadrupole qubit. Phys. Rev. Lett. 95, 030506 (2005).

    Article  ADS  Google Scholar 

  2. Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011).

    Article  ADS  Google Scholar 

  3. Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 512–515 (2011).

    Article  ADS  Google Scholar 

  4. Usmani, I. et al. Heralded quantum entanglement between two crystals. Nature Photon. 6, 234–237 (2012).

    Article  ADS  Google Scholar 

  5. Saglamyurek, E. et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nature Photon. 9, 83–87 (2015).

    Article  ADS  Google Scholar 

  6. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  ADS  Google Scholar 

  7. Kolesov, R. et al.. Optical detection of a single rare-earth ion in a crystal. Nature Commun. 3, 1029 (2012).

    Article  ADS  Google Scholar 

  8. Siyushev, P. et al.. Coherent properties of single rare-earth spin qubits. Nature Commun. 5, 3895 (2014).

    Article  ADS  Google Scholar 

  9. Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013).

    Article  ADS  Google Scholar 

  10. Utikal, T. et al.. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nature Commun. 5, 3627 (2014).

    Article  ADS  Google Scholar 

  11. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  12. Gong, Y. et al. Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform. Opt. Express 18, 2601–2612 (2010).

    Article  ADS  Google Scholar 

  13. Gong, Y. et al. Observation of transparency of erbium-doped silicon nitride in photonic crystal nanobeam cavities. Opt. Express 18, 13863–13873 (2010).

    Article  ADS  Google Scholar 

  14. Zhong, T., Kindem, J. M., Miyazono, E. & Faraon, A. Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals. Nature Commun. 6, 8206 (2015).

    Article  ADS  Google Scholar 

  15. McAuslan, D. L., Korystov, D. & Longdell, J. J. Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators. Phys. Rev. A 83, 063847 (2011).

    Article  ADS  Google Scholar 

  16. Vredenberg, A. M. et al. Controlled atomic spontaneous emission from Er3+in a transparent Si/SiO2 microcavity. Phys. Rev. Lett. 71, 517–520 (1993).

    Article  ADS  Google Scholar 

  17. Lipson, M. & Kimerling, L. C. Er3+ in strong light-confining microcavity. Appl. Phys. Lett. 77, 1150–1152 (2000).

    Article  ADS  Google Scholar 

  18. Goto, H., Nakamura, S., Kujiraoka, M. & Ichimura, K. Cavity-enhanced spectroscopy of a rare-earth-ion-doped crystal: observation of a power law for inhomogeneous broadening. Opt. Express 21, 24332–24343 (2013).

    Article  ADS  Google Scholar 

  19. Urbach, H. P. & Rikken, G. L. J. A. Spontaneous emission from a dielectric slab. Phys. Rev. A 57, 3913–3930 (1998).

    Article  ADS  Google Scholar 

  20. Jun, Y. C., Briggs, R. M., Atwater, H. A. & Brongersma, M. L. Broadband enhancement of light emission in silicon slot waveguides. Opt. Express 17, 7479–7490 (2009).

    Article  ADS  Google Scholar 

  21. Jamison, S. P. & Reeves, R. J. Optical depolarization in CaF2:RE3+ and SrF2:RE3+C4v centers due to dipole reorientation. J. Lumin. 66–67, 169–173 (1995).

    Article  Google Scholar 

  22. Genov, D. A., Oulton, R. F., Bartal, G. & Zhang, X. Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures. Phys. Rev. B 83, 245312 (2011).

    Article  ADS  Google Scholar 

  23. Bauters, J. F. et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express 19, 3163–3174 (2011).

    Article  ADS  Google Scholar 

  24. Tien, M.-C. et al. Ultra-high quality factor planar Si3N4 ring resonators on Si substrates. Opt. Express 19, 13551–13556 (2011).

    Article  ADS  Google Scholar 

  25. Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011).

    Article  ADS  Google Scholar 

  26. Ding, D. et al. Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator. Opt. Express 22, 6778–6790 (2014).

    Article  ADS  Google Scholar 

  27. Yeh, D. C., Sibley, W. A., Suscavage, M. & Drexhage, M. G. Radiation effects and optical transitions in Yb3+doped barium-thorium fluoride glass. J. Non-Cryst. Solids 88, 66–82 (1986).

    Article  ADS  Google Scholar 

  28. Brundage, R. T. & Yen, W. M. Low-temperature homogeneous linewidths of Yb3+ in inorganic glasses. Phys. Rev. B 33, 4436–4438 (1986).

    Article  ADS  Google Scholar 

  29. Hegarty, J., Broer, M. M., Golding, B., Simpson, J. R. & MacChesney, J. B. Photon echoes below 1 K in a Nd3+-doped glass fiber. Phys. Rev. Lett. 51, 2033–2035 (1983).

    Article  ADS  Google Scholar 

  30. Staudt, M. U. et al. Investigations of optical coherence properties in an erbium-doped silicate fiber for quantum state storage. Opt. Commun. 266, 720–726 (2006).

    Article  ADS  Google Scholar 

  31. Barradas, N. P., Jeynes, C. & Webb, R. P. Simulated annealing analysis of Rutherford backscattering data. Appl. Phys. Lett. 71, 291–293 (1997).

    Article  ADS  Google Scholar 

  32. Polman, A., Jacobson, D. C., Eaglesham, D. J., Kistler, R. C. & Poate, J. M. Optical doping of waveguide materials by MeV Er implantation. J. Appl. Phys. 70, 3778–3784 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M.P. van Exter for scientific discussions and proofreading of the manuscript, and A.M.J. den Haan, J.J.T. Wagenaar, M. de Wit and T.H. Oosterkamp for operating the dilution refrigerator. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). This work was supported by NWO VICI grant no. 680-47-604, NSF DMR-0960331, NSF PHY-1206118, DARPA MTO under EPHI contract HR0011-12-C-0006 and the Fund for Scientific Research–Flanders (FWO).

Author information

Authors and Affiliations

Authors

Contributions

J.F.B., M.J.R.H. and J.E.B. fabricated the ring resonator. L.M.C.P. and A.V. performed the ion implantation. G.W. contributed to the low-temperature measurements. D.D. designed and performed all the measurements and, with M.J.A.D. and D.B., analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Dirk Bouwmeester.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Pereira, L., Bauters, J. et al. Multidimensional Purcell effect in an ytterbium-doped ring resonator. Nature Photon 10, 385–388 (2016). https://doi.org/10.1038/nphoton.2016.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing