Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate

Abstract

Mode-locked lasers have enabled some of the most precise measurements ever performed, from attosecond time-domain spectroscopy to metrology with frequency combs. However, such extreme precision belies the complexity of the underlying mode-locking dynamics. This complexity is particularly evident in the emergence of the mode-locked state, an intrinsically singular, non-repetitive transition. Many details of mode-locking are well understood, yet conventional spectroscopy cannot resolve the nascent dynamics in passive mode-locking on their natural nanosecond timescale, the single pulse period. Here, we capture the pulse-resolved spectral evolution of a femtosecond pulse train from the initial fluctuations, recording 900,000 consecutive periods. We directly observe critical phenomena on timescales from tens to thousands of roundtrips, including the birth of the broadband spectrum, accompanying wavelength shifts and transient interference dynamics described as auxiliary-pulse mode-locking. Enabled by the time-stretch transform, the results may impact laser design, ultrafast diagnostics and nonlinear optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The buildup of femtosecond mode-locking in real time.
Figure 2: Three transitions from quasi-c.w. to mode-locked operation.
Figure 3: Long-term and short-term views of the mode-locking transition.

Similar content being viewed by others

References

  1. Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).

    Article  ADS  Google Scholar 

  2. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  3. Agrawal, G. P. Nonlinear Fiber Optics (Academic, 2007).

    MATH  Google Scholar 

  4. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135 (2006).

    Article  ADS  Google Scholar 

  5. Solli, D., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).

    Article  ADS  Google Scholar 

  6. Birkholz, S. et al. Spatiotemporal rogue events in optical multiple filamentation. Phys. Rev. Lett. 111, 243903 (2013).

    Article  ADS  Google Scholar 

  7. Morgner, U. et al. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 24, 411–413 (1999).

    Article  ADS  Google Scholar 

  8. Sutter, D. H. et al. Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24, 631–633 (1999).

    Article  ADS  Google Scholar 

  9. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  10. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

    Article  ADS  Google Scholar 

  11. Spence, D. E., Kean, P. N. & Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 42–44 (1991).

    Article  ADS  Google Scholar 

  12. Ippen, E. P., Haus, H. A. & Liu, L. Additive pulse mode locking. J. Opt. Soc. Am. B 6, 1736–1745 (1989).

    Article  ADS  Google Scholar 

  13. Krausz, F., Brabec, T. & Spielmann, C. Self-starting passive mode locking. Opt. Lett. 16, 235–237 (1991).

    Article  ADS  Google Scholar 

  14. Salin, F., Pich, M. & Squier, J. Mode locking of Ti:Al2O3 lasers and self-focusing: a Gaussian approximation. Opt. Lett. 16, 1674–1676 (1991).

    Article  ADS  Google Scholar 

  15. Chilla, J. L. & Martinez, O. E. Spatial-temporal analysis of the self-mode-locked Ti:sapphire laser. J. Opt. Soc. Am. B 10, 638–643 (1993).

    Article  ADS  Google Scholar 

  16. Ippen, E. P. Principles of passive mode locking. Appl. Phys. B 58, 159–170 (1994).

    Article  ADS  Google Scholar 

  17. Krausz, F. et al. Femtosecond solid-state lasers. IEEE J. Quantum Electron. 28, 2097–2122 (1992).

    Article  ADS  Google Scholar 

  18. Herrmann, J. Starting dynamic, self-starting condition and mode-locking threshold in passive, coupled-cavity or Kerr-lens mode-locked solid-state lasers. Opt. Commun. 98, 111–116 (1993).

    Article  ADS  Google Scholar 

  19. Kartner, F. X., Jung, I. & Keller, U. Soliton mode-locking with saturable absorbers. IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).

    Article  ADS  Google Scholar 

  20. Cerullo, G., De Silvestri, S. & Magni, V. Self-starting Kerr-lens mode locking of a Ti:sapphire laser. Opt. Lett. 19, 1040–1042 (1994).

    Article  ADS  Google Scholar 

  21. Shieh, J.-M., Ganikhanov, F., Lin, K.-H., Hsieh, W.-F. & Pan, C.-L. Completely self-starting picosecond and femtosecond Kerr-lens mode-locked Ti:sapphire laser. J. Opt. Soc. Am. B 12, 945–949 (1995).

    Article  ADS  Google Scholar 

  22. Solis, J. et al. Experimental study of a self-starting Kerr-lens mode-locked titanium-doped sapphire laser. Opt. Commun. 123, 547–552 (1996).

    Article  ADS  Google Scholar 

  23. Kuo, J.-C. et al. Pulse-forming dynamics of a cw passively mode-locked Ti:sapphire/DDI laser. Opt. Lett. 17, 334–336 (1992).

    Article  ADS  Google Scholar 

  24. Pu, N.-W., Shieh, J.-M., Lai, Y. & Pan, C.-L. Starting dynamics of a cw passively mode-locked picosecond Ti:sapphire/DDI laser. Opt. Lett. 20, 163–165 (1995).

    Article  ADS  Google Scholar 

  25. Ozimek, F. et al. Witnessing the pulse birth—transient dynamics in a passively mode-locked femtosecond laser. Laser Phys. Lett. 10, 125003 (2013).

    Article  ADS  Google Scholar 

  26. Sarukura, N. & Ishida, Y. Pulse evolution dynamics of a femtosecond passively mode-locked Ti: sapphire laser. Opt. Lett. 17, 61–63 (1992).

    Article  ADS  Google Scholar 

  27. Wei, X., Zhang, C., Li, B. & Wong, K. K. Y. Observing the spectral dynamics of a mode-locked laser with ultrafast parametric spectro-temporal analyzer. Paper STh3L.4, CLEO 2015, OSA Technical Digest (Optical Society of America, 2015).

  28. Kelkar, P., Coppinger, F., Bhushan, A. & Jalali, B. Time-domain optical sensing. Electron. Lett. 35, 1661–1662 (1999).

    Article  Google Scholar 

  29. Solli, D., Gupta, S. & Jalali, B. Optical phase recovery in the dispersive Fourier transform. Appl. Phys. Lett. 95, 231108 (2009).

    Article  ADS  Google Scholar 

  30. Bhushan, A., Coppinger, F. & Jalali, B. Time-stretched analogue-to-digital conversion. Electron. Lett. 34, 839–841 (1998).

    Article  Google Scholar 

  31. Solli, D., Herink, G., Jalali, B. & Ropers, C. Fluctuations and correlations in modulation instability. Nature Photon. 6, 463–468 (2012).

    Article  ADS  Google Scholar 

  32. Godin, T. et al. Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Opt. Express 21, 18452–18460 (2013).

    Article  ADS  Google Scholar 

  33. Descloux, D. et al. Spectrotemporal dynamics of a picosecond OPO based on chirped quasi-phase-matching. Opt. Lett. 40, 280–283 (2015).

    Article  ADS  Google Scholar 

  34. Runge, A. F., Broderick, N. G. & Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2, 36–39 (2015).

    Article  ADS  Google Scholar 

  35. Goda, K. et al. High-throughput single-microparticle imaging flow analyzer. Proc. Natl Acad. Sci. USA 109, 11630–11635 (2012).

    Article  ADS  Google Scholar 

  36. Liu, Y.-M., Sun, K., Prucnal, P. R. & Lyon, S. Simple method to start and maintain self-mode-locking of a Ti:sapphire laser. Opt. Lett. 17, 1219–1221 (1992).

    Article  ADS  Google Scholar 

  37. Herrmann, J. & Müller, M. Operating principle, saturable loss, and self-frequency shift in Kerr-shift mode-locked lasers. Opt. Lett. 20, 22–24 (1995).

    Article  ADS  Google Scholar 

  38. Kalashnikov, V. L., Sorokin, E. & Sorokina, I. T. Mechanisms of spectral shift in ultrashort-pulse laser oscillators. J. Opt. Soc. Am. B 18, 1732–1741 (2001).

    Article  ADS  Google Scholar 

  39. Gordon, A., Gat, O., Fischer, B. & Kärtner, F. X. Self-starting of passive mode locking. Opt. Express 14, 11142–11154 (2006).

    Article  ADS  Google Scholar 

  40. Li, H., Ouzounov, D. G. & Wise, F. W. Starting dynamics of dissipative-soliton fiber laser. Opt. Lett. 35, 2403–2405 (2010).

    Article  ADS  Google Scholar 

  41. Soto-Crespo, J., Akhmediev, N. & Town, G. Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber. J. Opt. Soc. Am. B 19, 234–242 (2002).

    Article  ADS  Google Scholar 

  42. Vodonos, B. et al. Experimental study of the stochastic nature of the pulsation self-starting process in passive mode locking. Opt. Lett. 30, 2787–2789 (2005).

    Article  ADS  Google Scholar 

  43. Menyuk, C. R. et al. Pulse dynamics in mode-locked lasers: relaxation oscillations and frequency pulling. Opt. Express 15, 6677–6689 (2007).

    Article  ADS  Google Scholar 

  44. Antenucci, F., Berganza, M. I. & Leuzzi, L. Statistical physical theory of mode-locking laser generation with a frequency comb. Phys. Rev. A 91, 043811 (2015).

    Article  ADS  Google Scholar 

  45. Spielmann, C., Krausz, F., Brabec, T., Wintner, E. & Schmidt, A. Experimental study of additive-pulse mode locking in an Nd:glass laser. IEEE J. Quantum Electron. 27, 1207–1213 (1991).

    Article  ADS  Google Scholar 

  46. Haus, H. & Ippen, E. Self-starting of passively mode-locked lasers. Opt. Lett. 16, 1331–1333 (1991).

    Article  ADS  Google Scholar 

  47. Komarov, A., Komarov, K. & Mitschke, F. Phase-modulation bistability and threshold self-start of laser passive mode locking. Phys. Rev. A 65, 053803 (2002).

    Article  ADS  Google Scholar 

  48. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    Article  Google Scholar 

  49. Durfee, C. G. et al. Direct diode-pumped Kerr-lens mode-locked Ti: sapphire laser. Opt. Express 20, 13677–13683 (2012).

    Article  ADS  Google Scholar 

  50. Huber, R., Wojtkowski, M. & Fujimoto, J. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14, 3225–3237 (2006).

    Article  ADS  Google Scholar 

  51. Leonetti, M., Conti, C. & Lopez, C. The mode-locking transition of random lasers. Nature Photon. 5, 615–617 (2011).

    Article  ADS  Google Scholar 

  52. Herr, T. et al. Temporal solitons in optical microresonators. Nature Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  53. Fard, A. M., Gupta, S. & Jalali, B. Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging. Laser Photon. Rev. 7, 207–263 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The UCLA work was supported by the Office of Naval Research (ONR) Multidisciplinary University Research (MURI) programme on Optical Computing and the ONR MURI programme on Nanophotonics.

Author information

Authors and Affiliations

Authors

Contributions

All authors were closely involved in this study and contributed to the ideas, realization of the experiments, data analysis and interpretation, and writing of the paper.

Corresponding author

Correspondence to G. Herink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1914 kb)

Supplementary information

Supplementary Movie 1 (MP4 4164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herink, G., Jalali, B., Ropers, C. et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nature Photon 10, 321–326 (2016). https://doi.org/10.1038/nphoton.2016.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing