Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interference and dynamics of light from a distance-controlled atom pair in an optical cavity

Abstract

Interference is central to quantum physics and occurs when indistinguishable paths exist, as in a double-slit experiment. Replacing the two slits with single atoms1 introduces optical nonlinearities for which non-trivial interference phenomena are predicted2,3,4,5,6. Their observation, however, has been hampered by difficulties in preparing the required atomic distribution, controlling the optical phases and detecting the faint light. Here we overcome all of these experimental challenges by combining an optical lattice for atom localization, an imaging system with single-site resolution and an optical resonator for light steering. We observe resonator-induced saturation of resonance fluorescence7,8 for constructive interference and non-zero emission with huge photon bunching for destructive interference. The latter is explained by atomic saturation and photon-pair generation, similar to predictions for free-space atoms3,4,5,9. Our experimental setting allows realization of the Tavis–Cummings model10 for any number of atoms and photons, exploration of fundamental aspects of light–matter interaction11,12,13,14,15 and implementation of new quantum information processing protocols16,17,18,19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Energy spectrum of the atom–cavity system.
Figure 3: Photon-emission rate and g(2)(0) photon statistics as a function of ɸ.
Figure 4: Emission dynamics for in- and out-of-phase coupling.

Similar content being viewed by others

References

  1. Eichmann, U. et al. Young's interference experiment with light scattered from two atoms. Phys. Rev. Lett. 70, 2359–2362 (1993).

    Article  ADS  Google Scholar 

  2. Vogel, W. & Welsch, D.-G. Squeezing pattern in resonance fluorescence from a regular N-atom system. Phys. Rev. Lett. 54, 1802–1805 (1985).

    Article  ADS  Google Scholar 

  3. Richter, T. Interference between the resonance fluorescence fields from two independent atoms and spatial two-photon correlations. Opt. Commun. 80, 285–294 (1991).

    Article  ADS  Google Scholar 

  4. Schön, C. & Beige, A. Analysis of a two-atom double-slit experiment based on environment-induced measurements. Phys. Rev. A 64, 023806 (2001).

    Article  ADS  Google Scholar 

  5. Skornia, C., von Zanthier, J., Agarwal, G. S., Werner, E. & Walther, H. Nonclassical interference effects in the radiation from coherently driven uncorrelated atoms. Phys. Rev. A 64, 063801 (2001).

    Article  ADS  Google Scholar 

  6. Grünwald, P. & Vogel, W. Entanglement in atomic resonance fluorescence. Phys. Rev. Lett. 104, 233602 (2010).

    Article  ADS  Google Scholar 

  7. Alsing, P. M., Cardimona, D. A. & Carmichael, H. J. Suppression of fluorescence in a lossless cavity. Phys. Rev. A 45, 1793–1803 (1992).

    Article  ADS  Google Scholar 

  8. Reimann, R. et al. Cavity-modified collective Rayleigh scattering of two atoms. Phys. Rev. Lett. 114, 023601 (2015).

    Article  ADS  Google Scholar 

  9. Carmichael, H. J. Quantum trajectory theory for cascaded open systems. Phys. Rev. Lett. 70, 2273–2276 (1993).

    Article  ADS  Google Scholar 

  10. Tavis, M. & Cummings, F. W. Exact solution for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968).

    Article  ADS  Google Scholar 

  11. Habibian, H., Zippilli, S. & Morigi, G. Quantum light by atomic arrays in optical resonators. Phys. Rev. A 84, 033829 (2011).

    Article  ADS  Google Scholar 

  12. Macovei, M., Ever, J., Li, G. & Keitel, C. H. Strong-field spatial interference in a tailored electromagnetic bath. Phys. Rev. Lett. 98, 043602 (2007).

    Article  ADS  Google Scholar 

  13. Habibian, H., Zippilli, S., Illuminati, F. & Morigi, G. Stationary entanglement of photons and atoms in a high-finesse resonator. Phys. Rev. A 89, 023832 (2014).

    Article  ADS  Google Scholar 

  14. Nikoghosyan, G., Hartmann, M. J. & Plenio, M. B. Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble. Phys. Rev. Lett. 108, 123603 (2012).

    Article  ADS  Google Scholar 

  15. Fernández-Vidal, S., Zippilli, S. & Morigi, G. Nonlinear optics with two trapped atoms. Phys. Rev. A 76, 053829 (2007).

    Article  ADS  Google Scholar 

  16. Kastoryano, M. J., Reiter, F. & Sørensen, A. S. Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011).

    Article  ADS  Google Scholar 

  17. Pachos, J. & Walther, H. Quantum computation with trapped ions in an optical cavity. Phys. Rev. Lett. 89, 187903 (2002).

    Article  ADS  Google Scholar 

  18. Metz, J., Trupke, M. & Beige, A. Robust entanglement through macroscopic quantum jumps. Phys. Rev. Lett. 97, 040503 (2006).

    Article  ADS  Google Scholar 

  19. Pellizzari, T., Gardiner, S. A., Cirac, J. I. & Zoller, P. Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75, 3788–3791 (1994).

    Article  ADS  Google Scholar 

  20. Carmichael, H. J. & Walls, D. F. A quantum-mechanical master equation treatment of the dynamical Stark effect. J. Phys. B 9, 1199–1219 (1976).

    Article  ADS  Google Scholar 

  21. Walls, D. F. & Zoller, P. Reduced quantum fluctuations in resonance fluorescence. Phys. Rev. Lett. 47, 709–711 (1981).

    Article  ADS  Google Scholar 

  22. Kimble, H., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    Article  ADS  Google Scholar 

  23. Schulte, C. H. H. et al. Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015).

    Article  ADS  Google Scholar 

  24. Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

    Article  ADS  Google Scholar 

  25. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  26. Kubanek, A. et al. Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett 101, 203602 (2008).

    Article  ADS  Google Scholar 

  27. Ourjoumtsev, A. et al. Observation of squeezed light from one atom excited with two photons. Nature 474, 623–626 (2011).

    Article  ADS  Google Scholar 

  28. van Loo, A. F. et al. Photon-mediated interactions between distant artificial atoms. Science 342, 1494–1496 (2013).

    Article  ADS  Google Scholar 

  29. Casabone, B. et al. Enhanced quantum interface with collective ion-cavity coupling. Phys. Rev. Lett. 114, 023602 (2015).

    Article  ADS  Google Scholar 

  30. Zippilli, S., Morigi, G. & Ritsch, H. Suppression of Bragg scattering by collective interference of spatially ordered atoms with a high-Q cavity mode. Phys. Rev. Lett. 93, 123002 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Kochanke for the design of the objective, F. Saworski and C. Hahn for contributions in an early stage of the experiment and M. Uphoff for discussions. This work was supported by the European Union integrated project Simulators and Interfaces with Quantum Systems (SIQS), by the Bundesministerium für Bildung und Forschung (BMBF, Verbund QK_QuOReP and Q.com-Q) and by the Deutsche Forschungsgemeinschaft via the excellence cluster Nanosystems Initiative Munich (NIM).

Author information

Authors and Affiliations

Authors

Contributions

A.N., G.R. and S.R. conceived the experiment. A.N., M.K. and O.M. performed the experiment. A.N., M.K. and S.R. evaluated the data. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to S. Ritter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neuzner, A., Körber, M., Morin, O. et al. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity. Nature Photon 10, 303–306 (2016). https://doi.org/10.1038/nphoton.2016.19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.19

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing