Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Attosecond pulses measured from the attosecond lighthouse

Abstract

The attosecond lighthouse is a method of using ultrafast wavefront rotation with high-harmonic generation to create a series of coherent, spatially separated attosecond pulses. Previously, temporal measurements by photoelectron streaking characterized isolated attosecond pulses created by manipulating the single-atom response1,2,3,4. The attosecond lighthouse, in contrast, generates a series of pulses that spatially separate and become isolated by propagation. Here, we show that ultrafast wavefront rotation maintains the single-atom response (in terms of temporal character) of an isolated attosecond pulse over two octaves of bandwidth. Moreover, we exploit the unique property of the attosecond lighthouse—the generation of several isolated pulses—to measure the three most intense pulses. These pulses each have a unique spectrum and spectral phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the attosecond lighthouse and the pulse-dependent spectral phase.
Figure 2: Characterization of the pulse created at the peak of the driving field transmitted through a Be filter.
Figure 3: Short-time Fourier transform of the pulse in Fig. 2.
Figure 4: Characterizing three isolated pulses transmitted through an Al filter.

Similar content being viewed by others

References

  1. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  2. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  3. Feng, X. et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Phys. Rev. Lett. 103, 183901 (2009).

    Article  ADS  Google Scholar 

  4. Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photon. 4, 875–879 (2010).

    Article  ADS  Google Scholar 

  5. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  6. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  7. Corkum, P. B., Brunett, N. H. & Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

    Article  ADS  Google Scholar 

  8. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  9. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    Article  ADS  Google Scholar 

  10. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  11. Vincenti, H. & Quéré, F. Attosecond lighthouse: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys. Rev. Lett. 108, 113904 (2012).

    Article  ADS  Google Scholar 

  12. Kim, K. T. et al. Photonic streaking of attosecond pulse trains. Nature Photon. 7, 651–656 (2013).

    Article  ADS  Google Scholar 

  13. Wheeler, J. A. et al. Attosecond lighthouses from plasma mirrors. Nature Photon. 6, 829–833 (2012).

    Article  ADS  Google Scholar 

  14. Kim, K. T., Kim, C. M., Baik, M.-G., Umesh, G. & Nam, C. H. Single sub-50-attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion. Phys. Rev. A 69, 051805 (2004).

    Article  ADS  Google Scholar 

  15. López-Martens, R. et al. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001 (2005).

    Article  ADS  Google Scholar 

  16. Zhao, K. et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37, 3891–3893 (2012).

    Article  ADS  Google Scholar 

  17. Ko, D. H., Kim, K. T. & Nam, C. H. Attosecond-chirp compensation with material dispersion to produce near transform-limited attosecond pulses. J. Phys. B 45, 074015 (2012).

    Article  ADS  Google Scholar 

  18. Hofstetter, M. et al. Attosecond dispersion control by extreme ultraviolet multilayer mirrors. Opt. Express 19, 1767–1776 (2011).

    Article  ADS  Google Scholar 

  19. Bourassin-Bouchet, C. et al. Shaping of single-cycle sub-50-attosecond pulses with multilayer mirrors. New J. Phys. 14, 023040 (2012).

    Article  ADS  Google Scholar 

  20. Naumov, A. Y., Villeneuve, D. M. & Niikura, H. Contribution of multiple electron trajectories to high-harmonic generation in the few-cycle regime. Phys. Rev. A 91, 063421 (2015).

    Article  ADS  Google Scholar 

  21. Kane, D. J. Recent progress toward real-time measurement of ultrashort laser pulses. IEEE J. Quant. Electron. 35, 421–431 (1999).

    Article  ADS  Google Scholar 

  22. Mairesse, Y. & Quéré, F. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71, 011401 (2005).

    Article  ADS  Google Scholar 

  23. Chini, M., Wang, H., Khan, S. D., Chen, S. & Chang, Z. Retrieval of satellite pulses of single isolated attosecond pulses. Appl. Phys. Lett. 94, 161112 (2009).

    Article  ADS  Google Scholar 

  24. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  25. Mauritsson, J. et al. Attosecond electron spectroscopy using a novel interferometric pump-probe technique. Phys. Rev. Lett. 105, 053001 (2010).

    Article  ADS  Google Scholar 

  26. Lefebvre, C. et al. Attosecond pump-probe transition-state spectroscopy of laser-induced molecular dissociative ionization: Adiabatic versus nonadiabatic dressed-state dynamics. Phys. Rev. A 88, 053416 (2013).

    Article  ADS  Google Scholar 

  27. Hammond, T. J., Kim, K. T., Zhang, C., Villeneuve, D. M. & Corkum, P. B. Controlling attosecond angular streaking with second harmonic radiation. Opt. Lett. 40, 1768–1770 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the technical assistance of D. Crane and B. Avery, and useful discussions with A. Naumov. We also acknowledge financial support from Canada's NSERC, NRC, CFI, and CRC, as well as from America's AFOSR and DARPA Pulse Program through a grant from AMRDEC.

Author information

Authors and Affiliations

Authors

Contributions

T.J.H., K.T.K. and P.B.C. designed the experiment. T.J.H., G.G.B., and K.T.K. performed the experiment. K.T.K. and T.J.H. provided the theoretical analysis. T.J.H. analysed the experimental data. T.J.H. and P.B.C. prepared the initial manuscript. All authors contributed in writing the manuscript.

Corresponding author

Correspondence to T. J. Hammond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammond, T., Brown, G., Kim, K. et al. Attosecond pulses measured from the attosecond lighthouse. Nature Photon 10, 171–175 (2016). https://doi.org/10.1038/nphoton.2015.271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.271

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing