Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Infrared spectroscopy with visible light

Abstract

Spectral measurements in the infrared optical range provide unique fingerprints of materials, which are useful for material analysis, environmental sensing and health diagnostics1. Current infrared spectroscopy techniques require the use of optical equipment suited for operation in the infrared range, components of which face challenges of inferior performance and high cost. Here, we develop a technique that allows spectral measurements in the infrared range using visible-spectral-range components. The technique is based on nonlinear interference of infrared and visible photons, produced via spontaneous parametric down conversion2,3. The intensity interference pattern for a visible photon depends on the phase of an infrared photon travelling through a medium. This allows the absorption coefficient and refractive index of the medium in the infrared range to be determined from the measurements of visible photons. The technique can substitute and/or complement conventional infrared spectroscopy and refractometry techniques, as it uses well-developed components for the visible range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Angular-wavelength intensity distribution for signal photons from two SPDC crystals.
Figure 3: Dependence on wavelength.
Figure 4: Dependence on pressure.

Similar content being viewed by others

References

  1. Stuart, B. H. Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004).

    Book  Google Scholar 

  2. Zou, X. Y., Wang, L. J. & Mandel, L. Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett. 67, 318–321 (1991).

    Article  ADS  Google Scholar 

  3. Mandel, L. Quantum effects in one-photon and two-photon interference. Rev. Mod. Phys. 71, S274–S282 (1999).

    Article  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  5. Gisin, N. & Thew, R. Quantum communication. Nature Photon. 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  6. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  7. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  8. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2013).

    Article  ADS  Google Scholar 

  9. Abadie, J. et al. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys. 7, 962–965 (2011).

    Article  ADS  Google Scholar 

  10. Klyshko, D. N. Photon and Nonlinear Optics (Gordon & Breach Science, 1988).

    Google Scholar 

  11. Burlakov, A. V. et al. Interference effects in spontaneous two-photon parametric scattering from two macroscopic regions. Phys. Rev. A 56, 3214–3225 (1997).

    Article  ADS  Google Scholar 

  12. Korystov, D. Y., Kulik, S. P. & Penin, A. N. Rozhdestvenski hooks in two-photon parametric light scattering. J. Exp. Theor. Phys. Lett. 73, 214–218 (2001).

    Article  Google Scholar 

  13. Kulik, S. P. et al. Two-photon interference in the presence of absorption. J. Exp. Theor. Phys. 98, 31–38 (2004).

    Article  ADS  Google Scholar 

  14. Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    Article  ADS  Google Scholar 

  15. Hudelist, F. et al. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nature Commun. 5, 3049 (2014).

    Article  ADS  Google Scholar 

  16. Chen, B. et al. Atom–light hybrid interferometer. Phys. Rev. Lett. 115, 043602 (2015).

    Article  ADS  Google Scholar 

  17. Polivanov, Y. N. Raman scattering of light by polariton. Sov. Phys. Usp. 21, 805–831 (1978).

    Article  ADS  Google Scholar 

  18. Heilweil, E. J. Ultrashort-pulse multichannel infrared spectroscopy using broadband frequency conversion in LiIO3 . Opt. Lett. 14, 551–553 (1989).

    Article  ADS  Google Scholar 

  19. Dougherty, T. P. & Heilwell, E. J. Dual-beam subpicosecond broadband infrared spectrometer. Opt. Lett. 19, 129–131 (1994).

    Article  ADS  Google Scholar 

  20. Klyshko, D. N. Ramsey interference in two-photon parametric scattering. J. Exp. Theor. Phys. 77, 222–226 (1993).

  21. Belinsky, A. V. & Klyshko, D. N. Interference of classical and non-classical light. Phys. Lett. A 166, 303–307 (1992).

    Article  ADS  Google Scholar 

  22. Bideau-Mehu, A., Guern, Y., Abjean, R. & Johannin-Gilles, A. Interferometric determination of the refractive index of carbon dioxide in ultraviolet region. Opt. Commun. 9, 432–434 (1973).

    Article  ADS  Google Scholar 

  23. Heineken, F. W. & Battaglia, A. Absorption and refraction of ammonia as a function of pressure at 6 mm wavelength. Physica 24, 589–603 (1958).

    Article  ADS  Google Scholar 

  24. Burch, D. E. & Williams, D. Total absorptance by nitrous oxide bands in the infrared. Appl. Opt. 1, 473–482 (1962).

    Article  ADS  Google Scholar 

  25. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  26. Kailash, C. J., Covert, P. A. & Hore, D. K. Phase measurement in nondegenerate three-wave mixing spectroscopy. J. Chem. Phys. 134, 044712 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by DSI core funds within the framework of the Quantum Sensors programme. The authors thank G. Vienne, R. Bakker, G. Maslennikov and D. Kupriyanov for discussions and advice on the experiment.

Author information

Authors and Affiliations

Authors

Contributions

D.A.K. and L.A.K. assembled the experimental set-up and conducted the measurements. A.V.P. analysed the data and carried out numerical simulations. L.A.K. and S.P.K. conceived the idea and designed the experiment. All authors contributed to preparation of the manuscript.

Corresponding author

Correspondence to Leonid A. Krivitsky.

Ethics declarations

Competing interests

A.V.P., D.A.K. and L.A.K. are listed as inventors for a provisional patent application on the method described in Supplementary Section 1.

Supplementary information

Supplementary information

Supplementary information (PDF 419 kb)

Supplementary information

Supplementary figure (GIF 1042 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashnikov, D., Paterova, A., Kulik, S. et al. Infrared spectroscopy with visible light. Nature Photon 10, 98–101 (2016). https://doi.org/10.1038/nphoton.2015.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing