Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measuring subwavelength spatial coherence with plasmonic interferometry

Abstract

Optical interferometry has enabled quantification of the spatial and temporal correlations of electromagnetic fields, which laid the foundations for the theory of optical coherence. Despite significant advances in fundamental theories and applications, the measurement of nanoscale coherence lengths for highly incoherent optical fields has remained elusive. Here, we employ plasmonic interferometry (that is, optical interferometry with surface plasmons) to characterize the spatial degree of coherence of light beams down to subwavelength scales, with measured coherence lengths as low as 330 nm for an incident wavelength of 500 nm. Furthermore, we demonstrate a compact coherence meter that integrates this method with an image sensor. Precise determination of spatial coherence can advance high-resolution imaging and tomographic schemes, and provide an experimental platform for the development and testing of optical coherence theories at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and normalization method.
Figure 2: Plasmonic interferograms in the space–frequency domain arranged as a function of transverse spatial coherence.
Figure 3: Evidence of higher-order SPP contributions to plasmonic interferograms.
Figure 4: Spectrally and spatially resolved visibility maps from plasmonic interferograms.
Figure 5: Coherence length measurements.
Figure 6: Integrated coherence meter based on plasmonic interferometry.

Similar content being viewed by others

References

  1. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  2. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  3. Wolf, E. Introduction to the Theory of Coherence and Polarization of Light (Cambridge Univ. Press, 2007).

    MATH  Google Scholar 

  4. Wolf, E. Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 312, 263–267 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  5. Kagalwala, K. H., Di Giuseppe, G., Abouraddy, A. F. & Saleh, B. E. Bell's measure in classical optical coherence. Nat. Photon. 7, 72–78 (2013).

    Article  ADS  Google Scholar 

  6. Gbur, G. & Visser, T. The structure of partially coherent fields. Prog. Opt. 55, 285–341 (2010).

    Article  ADS  Google Scholar 

  7. Raghunathan, S. B., Schouten, H. F. & Visser, T. D. Correlation singularities in partially coherent electromagnetic beams. Opt. Lett. 37, 4179–4181 (2012).

    Article  ADS  Google Scholar 

  8. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  ADS  Google Scholar 

  9. Tearney, G. J. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).

    Article  Google Scholar 

  10. Fercher, A. F., Drexler, W., Hitzenberger, C. K. & Lasser, T. Optical coherence tomography—principles and applications. Rep. Prog. Phys. 66, 239–303 (2003).

    Article  ADS  Google Scholar 

  11. Redding, B., Choma, M. A. & Cao, H. Spatial coherence of random laser emission. Opt. Lett. 36, 3404–3406 (2011).

    Article  ADS  Google Scholar 

  12. Redding, B., Choma, M. A. & Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photon. 6, 355–359 (2012).

    Article  ADS  Google Scholar 

  13. Takeda, M., Wang, W., Duan, Z. & Miyamoto, Y. Coherence holography. Opt. Express 13, 9629–9635 (2005).

    Article  ADS  Google Scholar 

  14. Petruck, P., Riesenberg, R. & Kowarschik, R. Optimized coherence parameters for high-resolution holographic microscopy. Appl. Phys. B 106, 339–348 (2012).

    Article  ADS  Google Scholar 

  15. Rosen, J. & Takeda, M. Longitudinal spatial coherence applied for surface profilometry. Appl. Opt. 39, 4107–4111 (2000).

    Article  ADS  Google Scholar 

  16. Dubois, F. et al. Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis. Appl. Opt. 45, 864–871 (2006).

    Article  ADS  Google Scholar 

  17. James, D. F. & Wolf, E. Determination of the degree of coherence of light from spectroscopic measurements. Opt. Commun. 145, 1–4 (1998).

    Article  ADS  Google Scholar 

  18. Iaconis, C. & Walmsley, I. A. Direct measurement of the two-point field correlation function. Opt. Lett. 21, 1783–1785 (1996).

    Article  ADS  Google Scholar 

  19. Abouraddy, A. F., Kagalwala, K. H. & Saleh, B. E. Two-point optical coherency matrix tomography. Opt. Lett. 39, 2411–2414 (2014).

    Article  ADS  Google Scholar 

  20. Kagalwala, K. H., Kondakci, H. E., Abouraddy, A. F. & Saleh, B. E. Optical coherency matrix tomography. Sci. Rep. 5, 15333 (2015).

    Article  ADS  Google Scholar 

  21. Ritchie, R., Arakawa, E., Cowan, J. & Hamm, R. Surface–plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968).

    Article  ADS  Google Scholar 

  22. Raether, H. Surface Plasmons on Smooth Surfaces (Springer, 1988).

    Book  Google Scholar 

  23. Sambles, J., Bradbery, G. & Yang, F. Optical excitation of surface plasmons: an introduction. Contemp. Phys. 32, 173–183 (1991).

    Article  ADS  Google Scholar 

  24. Schouten, H. et al. Plasmon-assisted two-slit transmission: Young's experiment revisited. Phys. Rev. Lett. 94, 053901 (2005).

    Article  ADS  Google Scholar 

  25. Gan, C. H., Gbur, G. & Visser, T. D. Surface plasmons modulate the spatial coherence of light in Young's interference experiment. Phys. Rev. Lett. 98, 043908 (2007).

    Article  ADS  Google Scholar 

  26. Gan, C. H., Gu, Y., Visser, T. D. & Gbur, G. Coherence converting plasmonic hole arrays. Plasmonics 7, 313–322 (2012).

    Article  Google Scholar 

  27. Petruck, P., Riesenberg, R., Hübner, U. & Kowarschik, R. Spatial coherence on micrometer scale measured by a nanohole array. Opt. Commun. 285, 389–392 (2012).

    Article  ADS  Google Scholar 

  28. Saastamoinen, T. & Lajunen, H. Increase of spatial coherence by subwavelength metallic gratings. Opt. Lett. 38, 5000–5003 (2013).

    Article  ADS  Google Scholar 

  29. Lezec, H. & Thio, T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Express 12, 3629–3651 (2004).

    Article  ADS  Google Scholar 

  30. Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005).

    Article  ADS  Google Scholar 

  31. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  ADS  Google Scholar 

  32. Gay, G. et al. The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nat. Phys. 2, 262–267 (2006).

    Article  Google Scholar 

  33. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photon. 1, 402–406 (2007).

    Article  ADS  Google Scholar 

  34. Pitarke, J. M., Silkin, V. M., Chulkov, E. V. & Echenique, P. M. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1–87 (2007).

    Article  ADS  Google Scholar 

  35. Feng, J. et al. Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing. Nano Lett. 12, 602–609 (2012).

    Article  ADS  Google Scholar 

  36. Graydon, O. Sensing: plasmonic interferometry. Nat. Photon. 6, 139–139 (2012).

    Article  ADS  Google Scholar 

  37. Siu, V. S., Feng, J., Flanigan, P. W., Palmore, G. T. R. & Pacifici, D. A ‘plasmonic cuvette’: dye chemistry coupled to plasmonic interferometry for glucose sensing. Nanophotonics 3, 125–140 (2014).

    Article  ADS  Google Scholar 

  38. Feng, J., Li, D. & Pacifici, D. Circular slit-groove plasmonic interferometers: a generalized approach to high-throughput biochemical sensing. Opt. Mater. Express 5, 2742–2753 (2015).

    Article  ADS  Google Scholar 

  39. Li, D., Feng, J. & Pacifici, D. Nanoscale optical interferometry with incoherent light. Sci. Rep. 6, 20836 (2016).

    Article  ADS  Google Scholar 

  40. Altewischer, E., Van Exter, M. & Woerdman, J. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    Article  ADS  Google Scholar 

  41. Tame, M. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    Article  Google Scholar 

  42. Wang, T. et al. Temporal coherence of propagating surface plasmons. Opt. Lett. 39, 6679–6682 (2014).

    Article  ADS  Google Scholar 

  43. van Dijk, T., Fischer, D. G., Visser, T. D. & Wolf, E. Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere. Phys. Rev. Lett. 104, 173902 (2010).

    Article  ADS  Google Scholar 

  44. Wang, Y., Yan, S., Kuebel, D. & Visser, T. D. Dynamic control of light scattering using spatial coherence. Phys. Rev. A 92, 013806 (2015).

    Article  ADS  Google Scholar 

  45. Kuzmin, N. V. et al. Bouncing surface plasmons. Opt. Express 15, 13757–13767 (2007).

    Article  ADS  Google Scholar 

  46. Pacifici, D., Lezec, H., Atwater, H. A. & Weiner, J. Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits. Phys. Rev. B 77, 115411 (2008).

    Article  ADS  Google Scholar 

  47. Johnson, P. B. & Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  48. Grondalski, J. & James, D. Is there a fundamental limitation on the measurement of spatial coherence for highly incoherent fields? Opt. Lett. 28, 1630–1632 (2003).

    Article  ADS  Google Scholar 

  49. Tervo, J., Setala, T. & Friberg, A. Degree of coherence for electromagnetic fields. Opt. Express 11, 1137–1143 (2003).

    Article  ADS  Google Scholar 

  50. Gunay, K. T., Flanigan, P. W., Liu, P. & Pacifici, D. Polarization dependence of light transmission through individual nanoapertures in metal films. J. Opt. Soc. Am. B 31, 1150–1158 (2014).

    Article  ADS  Google Scholar 

  51. Angelsky, O. V., Yermolenko, S. B., Zenkova, C. Y. & Angelskaya, A. O. Polarization manifestations of correlation (intrinsic coherence) of optical fields. Appl. Opt. 47, 5492–5499 (2008).

    Article  ADS  Google Scholar 

  52. Rodenburg, B., Mirhosseini, M., Magaña-Loaiza, O. S. & Boyd, R. W. Experimental generation of an optical field with arbitrary spatial coherence properties. J. Opt. Soc. Am. B 31, A51–A55 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This Article is based on work partially supported from the National Science Foundation grant nos CBET–1159255 and CMMI–1530547. The authors acknowledge J. Feng, E. Marcora, A. Nurmikko and R. Zia for useful discussions and technical support, and V. Kilic, Y. J. Lee, T. Shen, S. Siontas, J. Wilson and S. Wu for reading the paper and providing suggestions.

Author information

Authors and Affiliations

Authors

Contributions

D.P. conceived and directed the experiments. D.M. and D.P. performed the experiments and analysed the data in Figs 1– 5. D.L. and D.P. performed the experiment and analysed the data in Fig. 6. D.M. and D.P. wrote the initial manuscript. All the authors edited and reviewed it.

Corresponding author

Correspondence to Domenico Pacifici.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrill, D., Li, D. & Pacifici, D. Measuring subwavelength spatial coherence with plasmonic interferometry. Nature Photon 10, 681–687 (2016). https://doi.org/10.1038/nphoton.2016.162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing