Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental investigation of the no-signalling principle in parity–time symmetric theory using an open quantum system

Abstract

The experimental progress achieved in parity–time () symmetry in classical optics1,2,3,4,5,6,7,8,9,10,11,12,13,14 is the most important accomplishment in the past decade15 and stimulates many new applications, such as unidirectional light transport5,6,7,8 and single-mode lasers12,13. However, in the quantum regime, some controversial effects are proposed for -symmetric theory16,17,18,19, for example, the potential violation of the no-signalling principle19. It is therefore important to understand whether -symmetric theory is consistent with well-established principles. Here, we experimentally study this no-signalling problem related to the -symmetric theory using two space-like separated entangled photons, with one of them passing through a post-selected quantum gate, which effectively simulates a -symmetric evolution. Our results suggest that the superluminal information transmission can be simulated when the successfully -symmetrically evolved subspace is solely considered. However, considering this subspace is only a part of the full Hermitian system, additional information regarding whether the -symmetric evolution is successful is necessary, which transmits to the receiver at maximally light speed, maintaining the no-signalling principle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketch of the global experimental set-up.
Figure 2: Bob's measurement results.
Figure 3: Experimental construction of gate.
Figure 4: A short-delay QRPG acting as the information source.

Similar content being viewed by others

References

  1. Ruschhaupt, A., Delgado, F. & Muga, J. G. Physical realization of -symmetric potential scattering in a planar slab waveguide. J. Phys. A 38, L171–L176 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  2. Klaiman, S., Günther, U. & Moiseyev, N. Visualization of branch points in -symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  3. Guo, A. et al. Observation of -symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    Article  ADS  Google Scholar 

  4. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nature Phys. 6, 192–195 (2010).

    Article  ADS  Google Scholar 

  5. Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nature Mater. 12, 108–113 (2013).

    Article  ADS  Google Scholar 

  6. Feng, L. et al. Nonreciprocal light propagation in a silicon photonic circuit. Science 333, 729–733 (2011).

    Article  ADS  Google Scholar 

  7. Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nature Phys. 10, 394–398 (2014).

    Article  ADS  Google Scholar 

  8. Chang, L. et al. Parity–time symmetry and variable optical isolation in active-passive-coupled microresonators. Nature Photon. 8, 524–529 (2014).

    Article  ADS  Google Scholar 

  9. Chong, Y. D., Ge, L. & Stone, A. D. -symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).

    Article  ADS  Google Scholar 

  10. Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012).

    Article  ADS  Google Scholar 

  11. Brandstetter, M. et al. Reversing the pump dependence of a laser at an exceptional point. Nature Commun. 5, 4034 (2014).

    Article  ADS  Google Scholar 

  12. Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    Article  ADS  Google Scholar 

  13. Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).

    Article  ADS  Google Scholar 

  14. Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

    Article  ADS  Google Scholar 

  15. Cham, J. Top 10 physics discoveries of the last 10 years. Nature Phys. 11, 799 (2015).

    Article  ADS  Google Scholar 

  16. Croke, S. -symmetric Hamiltonians and their application in quantum information. Phys. Rev. A 91, 052113 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  17. Bender, C. M., Brody, D. C., Jones, H. F. & Meister, B. K. Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  18. Bender, C. M. et al. -symmetric quantum state discrimination. Phil. Trans. R. Soc. A 371, 20120160 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  19. Lee, Y.-C., Hsieh, M.-H., Flammia, S. T. & Lee, R.-K. Local symmetry violates the no-signaling principle. Phys. Rev. Lett. 112, 130404 (2014).

    Article  ADS  Google Scholar 

  20. Shankar, R. Principles of Quantum Mechanics (Springer, 1994).

    Book  Google Scholar 

  21. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  22. Bender, C. M., Boettcher, S. & Meisinger, P. N. -symmetric quantum mechanics. J. Math. Phys. 40, 2201–2229 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  23. Bender, C. M., Brody, D. C. & Jones, H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002).

    Article  MathSciNet  Google Scholar 

  24. Günther, U. & Samsonov, B. F. Naimark-dilated -symmetric brachistochrone. Phys. Rev. Lett. 101, 230404 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  25. Günther, U. & Samsonov, B. F. -symmetric brachistochrone problem, Lorentz boosts, and nonunitary operator equivalence classes. Phys. Rev. A 78, 042115 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  26. Mostafazadeh, A. Pseudo-Hermiticity versus symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  27. Brody, D. C. Consistency of -symmetric quantum mechanics. J. Phys. A 49, 10LT03 (2016).

    Article  MathSciNet  Google Scholar 

  28. Schindler, J., Li, A., Zheng, M. C., Ellis, F. M. & Kottos, T. Experimental study of active LRC circuits with symmetries. Phys. Rev. A 84, 040101(R) (2011).

    Article  ADS  Google Scholar 

  29. Ramezani, H., Schindler, J., Ellis, F. M., Günther, U. & Kottos, T. Bypassing the bandwidth theorem with symmetry. Phys. Rev. A 85, 062122 (2012).

    Article  ADS  Google Scholar 

  30. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article  ADS  Google Scholar 

  31. Giustina, M. et al. Significant-loophole-free test of Bell's theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).

    Article  ADS  Google Scholar 

  32. Shalm, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).

    Article  ADS  Google Scholar 

  33. L'Ecuyer, P. & Simard, R. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33, 22 (2007).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to C. J. Zhang, Y. C. Lee and D. C. Brody for valuable discussions. This work is supported by the National Natural Science Foundation of China (Grants numbers 61490711, 11474267, 11274289, 11304305, 11325419, 61327901 and 91321313), the Strategic Priority Research Program(B) of the Chinese Academy of Sciences (Grant No. XDB01030300). C-F.L. acknowledges support from the EU Collaborative project QuProCS (641277).

Author information

Authors and Affiliations

Authors

Contributions

C-F.L., J-S.T., Y-T.W. and Y-J.H. planned and designed the experiments. J-S.T., Y-T.W. and S.Y. implemented the experiments with the help of J-S.X. and B-H.L. D-Y.H. fabricated the home-made circuit. C-F.L., Y-J.H., J-S.T., Y-T.W., G.C., Y-N.S. and K.S. carried out the theoretical analysis and developed the interpretation. J-S.T. and Y-J.H. wrote the paper with the help of C-F.L. and Y-T.W., and all authors discussed its contents. Y-J.H. supervised the theoretical part of the project. G-C.G. and C-F.L. supervised the project.

Corresponding authors

Correspondence to Yong-Jian Han or Chuan-Feng Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, JS., Wang, YT., Yu, S. et al. Experimental investigation of the no-signalling principle in parity–time symmetric theory using an open quantum system. Nature Photon 10, 642–646 (2016). https://doi.org/10.1038/nphoton.2016.144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing