Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spontaneous-emission control by photonic crystals and nanocavities

Abstract

We describe the recent experimental progress in the control of spontaneous emission by manipulating optical modes with photonic crystals. It has been clearly demonstrated that the spontaneous emission from light emitters embedded in photonic crystals can be suppressed by the so-called photonic bandgap, whereas the emission efficiency in the direction where optical modes exist can be enhanced. Also, when an artificial defect is introduced into the photonic crystal, a photonic nanocavity is produced that can interact with light emitters. Cavity quality factors, or Q factors, of up to 2 million have been realized while maintaining very small mode volumes, and both spontaneous-emission modification (the Purcell effect) and strong-coupling phenomena have been demonstrated. The use of photonic crystals and nanocavities to manipulate spontaneous emission will contribute to the evolution of a variety of applications, including illumination, display, optical communication, solar energy and even quantum-information systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SE control by semiconductor nanofabrication-based 3D PCs.
Figure 2: SE control by self-assembled 3D PCs (ref. 10).
Figure 3: Experimental results of SE control by 2D PC slab with a QW emitter.
Figure 4: Experimental results of SE control by 2D PC slab with a QD emitter.
Figure 5: High-Q nanocavity and SE from QDs embedded in the nanocavity.
Figure 6: Interaction between a nanocavity and QDs in the weak-coupling regime.
Figure 7: Interaction between a nanocavity and QDs in the strong-coupling regime18.
Figure 8: Ultrahigh-Q heterostructure photonic nanocavity.

Similar content being viewed by others

References

  1. Schubert, E. F. & Kim, J. K. Solid-state light sources getting smart. Science 308, 1274–1278 (2005).

    Article  ADS  Google Scholar 

  2. Ziemelis, K. Display technology: Glowing developments. Nature 399, 408–411 (1999).

    Article  ADS  Google Scholar 

  3. Suematsu, Y. & Arai, S. Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers. IEEE J. Sel. Top. Quant. Electron. 6, 1436–1449 (2000).

    Article  ADS  Google Scholar 

  4. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  ADS  Google Scholar 

  5. Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: Coherence in context. Science 298, 1372–1377 (2002).

    Article  ADS  Google Scholar 

  6. Loudon, R. The Quantum Theory of Light Ch. 2 (Oxford Univ. Press, New York, 2000).

    MATH  Google Scholar 

  7. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  8. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  9. Ogawa, S., Imada, M., Yoshimoto, S., Okano, M. & Noda, S. Control of light emission by 3D photonic crystals. Science 305, 227–229 (2004).

    Article  ADS  Google Scholar 

  10. Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystal. Nature 430, 654–657 (2004).

    Article  ADS  Google Scholar 

  11. Fujita, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005).

    Article  ADS  Google Scholar 

  12. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  13. Noda, S. Seeking the ultimate nanolaser. Science 314, 206–261 (2006).

    Article  Google Scholar 

  14. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Article  ADS  Google Scholar 

  15. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006).

    Article  ADS  Google Scholar 

  16. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  17. Song, B.-S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

    Article  ADS  Google Scholar 

  18. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  19. Cheng, C. C. & Scherer, A. Fabrication of photonic band-gap crystals. J. Vac. Sci. Tech. B 13, 2696–2700 (1995).

    Article  ADS  Google Scholar 

  20. Noda, S., Yamamoto, N. & Sasaki, A. New realization method for three-dimensional photonic crystal in optical wavelength region. Jpn J. Appl. Phys. 35, L909–L912 (1996).

    Article  ADS  Google Scholar 

  21. Tarhan, I. I. & Watson, G. H. Photonic band structure of fcc colloidal crystals. Phys. Rev. Lett. 76, 315–318 (1996).

    Article  ADS  Google Scholar 

  22. Michael, C. W., Olaf, L., Kurt, M., Qingzhe, W. & Michael, S. Laser rapid prototyping of photonic band-gap microstructures. Science 275, 1284–1286 (1997).

    Article  Google Scholar 

  23. Romanov, S. G. et al. Enhancement of the photonic gap of opal-based three-dimensional gratings. Appl. Phys. Lett. 70, 2091–2093 (1997).

    Article  ADS  Google Scholar 

  24. Miguez, H. et al. Photonic crystal properties of packed submicrometric SiO2 spheres. Appl. Phys. Lett. 71, 1148–1150 (1997).

    Article  ADS  Google Scholar 

  25. Wijnhoven, J. E. G. J. & Vos, W. L. Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998).

    Article  ADS  Google Scholar 

  26. Lin, S. Y. et al. A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394, 251–253 (1998).

    Article  ADS  Google Scholar 

  27. Noda, S., Tomoda, K., Yamamoto, N. & Chutinan, A. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 606–606 (2000).

    Article  ADS  Google Scholar 

  28. Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G. & Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

    Article  ADS  Google Scholar 

  29. Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000).

    Article  ADS  Google Scholar 

  30. Aoki, K. et al. Microassembly of semiconductor three-dimensional photonic crystals. Nature Mater. 2, 117–121 (2003).

    Article  ADS  Google Scholar 

  31. Qi, M. et al. A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004).

    Article  ADS  Google Scholar 

  32. Ho, K. M., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990).

    Article  ADS  Google Scholar 

  33. Yee, K. S. Numerical solution of initial boundary problem involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat. AP-14, 302–307 (1966).

    Article  ADS  Google Scholar 

  34. Okano, M., Chutinan, A. & Noda, S. Analysis and design of single-defect cavities in a three-dimensional photonic crystal. Phys. Rev. B 66, 165211 (2002).

    Article  ADS  Google Scholar 

  35. Salvarezza, R. C. et al. Edward-Wilkinson behavior of crystal surfaces grown by sedimentation of SiO2 nanospheres. Phys. Rev. Lett. 77, 4572–4575 (1996).

    Article  ADS  Google Scholar 

  36. Martorell, J. & Lawandy, N. M. Observation of inhibited spontaneous emission in a periodic dielectric structure. Phys. Rev. Lett. 65, 1877–1880 (1990).

    Article  ADS  Google Scholar 

  37. Megens, M., Wijnhoven, J. E. G. J., Lagendijk, A. & Vos, W. L. Fluorescence lifetimes and linewidths of dye in photonic crystals. Phys. Rev. A 59, 4727–4731 (1999).

    Article  ADS  Google Scholar 

  38. Yamasaki, T. & Tsutsui, T. Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres. Appl. Phys. Lett. 72, 1957–1959 (1998).

    Article  ADS  Google Scholar 

  39. Petrov, E. P., Bogomolov, V. N., Kalosha, I. I. & Gaponenko, S. V. Spontaneous emission of organic molecules embedded in a photonic crystal. Phys. Rev. Lett. 81, 77–80 (1998).

    Article  ADS  Google Scholar 

  40. Romanov, S. G., Fokin, A. V., Alperovich, V. I., Johnson, N. P. & De La Rue, R. M. The effect of the photonic stop-band upon the photoluminescence of CdS in opal. Phys. Status Solidi a 164, 169–173 (1997).

    Article  ADS  Google Scholar 

  41. Romanov, S. G., Fokin, A. V. & De La Rue, R. M. Anisotropic photoluminescence in incomplete three-dimensional photonic band-gap environments. Appl. Phys. Lett. 74, 1821–1823 (1999).

    Article  ADS  Google Scholar 

  42. Vlasov, Y. A., Deutsch, M., & Norris, D. J. Single-domain spectroscopy of self-assembled photonic crystals, Appl. Phys. Lett. 76, 1627–1629 (2000).

    Article  ADS  Google Scholar 

  43. Valenta, J. et al. Photonic band-gap effects on photoluminescence of silicon nanocrystals embedded in artificial opals. J. Appl. Phys. 93, 4471–4474 (2003).

    Article  ADS  Google Scholar 

  44. Gourley, P. L., Wendt, J. R., Vawter, G. A., Brennan, T. M. & Hammons, B. E. Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors. Appl. Phys. Lett. 64, 687–689 (1994).

    Article  ADS  Google Scholar 

  45. Krauss, T., Song, Y. P., Thoms, S., Wilkinson, C. D. W. & De la Rue, R. M. Fabrication of 2-D photonic bandgap structures in GaAs/AlGaAs. Electron. Lett. 30, 1444–1446 (1994).

    Article  Google Scholar 

  46. Baba, T. & Matsuzaki, T. Polarization change in spontaneous emission from GaInAsP/InP 2-dimensional photonic crystals. Electron. Lett. 31, 1776–1778 (1995).

    Article  Google Scholar 

  47. Fan, S. H., Villeneuve, P. R., Joannopoulos, J. D. & Schubert, E. F. High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett. 78, 3294–3297 (1997).

    Article  ADS  Google Scholar 

  48. Fujita, M. et al. Controlled spontaneous-emission phenomena in semiconductor slabs with a two-dimensional photonic bandgap. J. Opt. A 8, S131–S138 (2006).

    Article  Google Scholar 

  49. Baba, T. et al. Strong enhancement of light extraction efficiency in GaInAsP 2-D-arranged microcolumns. J. L ightwave Tech. 17, 2113–2120 (1999).

    Article  ADS  Google Scholar 

  50. Ryu, H. Y. et al. Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures. Appl. Phys. Lett. 78, 1174–1176 (2001).

    Article  ADS  Google Scholar 

  51. Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–942 (1982).

    Article  ADS  Google Scholar 

  52. Kounoike K. et al. Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab. Electron. Lett. 41, 1402–1403 (2005).

    Article  Google Scholar 

  53. Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N. & Le Roux, G. Growth by molecular beam epitaxy and characterization of InAs-GaAs strained-layer superlattices. Appl. Phys. Lett. 47, 1099–1101 (1985).

    Article  ADS  Google Scholar 

  54. Tabuchi, M., Noda, S. & Sasaki, A. in Science and Technology of Mesoscopic Structures (eds Namba, S., Hamaguchi, C. & Ando, T.) 379 (Springer, Tokyo, 1992).

    Google Scholar 

  55. Fujita, M. et al. in Conference on Lasers and Electro-optics / Quantum Electronics and Laser Science Conference 2006, QTuL2, Long Beach Convention Center, Long Beach, USA, May 21–26 (2006).

  56. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  57. Ryu, H. Y., Park, H. G. & Lee, Y. H. Two-dimensional photonic crystal semiconductor lasers: Computational design, fabrication, and characterization. IEEE J. Sel. Top. Quant. Electron. 8, 891–908 (2002).

    Article  ADS  Google Scholar 

  58. Loncar, M., Yoshie, T., Scherer, A., Gogna, P. & Qiu, Y. M. Low-threshold photonic crystal laser. Appl. Phys. Lett. 81, 2680–2682 (2002).

    Article  ADS  Google Scholar 

  59. Srinivasan, K. et al. Experimental demonstration of a high quality factor photonic crystal microcavity. Appl. Phys. Lett. 83, 1915–1917 (2003).

    Article  ADS  Google Scholar 

  60. Akahane, Y., Asano, T., Song, B. S. & Noda, S. Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs. Appl. Phys. Lett. 83, 1512–1514 (2003).

    Article  ADS  Google Scholar 

  61. Vučkovič, J., Lončar, M., Mabuchi, H. & Schere, A. Optimization of the Q factor in photonic crystal microcavities. IEEE J. Quant. Electron. 38, 850–856 (2002).

    Article  ADS  Google Scholar 

  62. Srinivasan, K. & Painter, O. Momentum space design of high-Q photonic crystal optical cavities. Opt. Express 10, 670–684 (2002).

    Article  ADS  Google Scholar 

  63. Asano, T. & Noda, S. Tuning holes in photonic-crystal nanocavities. Nature (doi:10.1038/nature02602) 2004.

  64. Happ, T. D. et al. Enhanced light emission of InxGa1-xAs quantum dots in a two-dimensional photonic-crystal defect microcavity. Phys. Rev. B 66, 041303 (2002).

    Article  ADS  Google Scholar 

  65. Iwamoto, S. et al. Observation of 1.55 μm light emission from InAs quantum dots in photonic crystal microcavity. Jpn J. Appl. Phys. 44, 2579–2583 (2005).

    Article  ADS  Google Scholar 

  66. Baba, T. et al. Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature. Appl. Phys. Lett. 85, 3989–3991 (2004).

    Article  ADS  Google Scholar 

  67. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    Article  ADS  Google Scholar 

  68. Kress, A. et al. Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals. Phys. Rev. B 71, 241304 (2005).

    Article  ADS  Google Scholar 

  69. Chang, W. H. et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96, 117401 (2006).

    Article  ADS  Google Scholar 

  70. Gevaux, D. G. et al. Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities. Appl. Phys. Lett. 88, 131101 (2006).

    Article  ADS  Google Scholar 

  71. Strauf, S. et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006).

    Article  ADS  Google Scholar 

  72. Nomura, M. et al. Room temperature continuous-wave lasing in photonic crystal nanocavity. Opt. Express 14, 6308–6315 (2006).

    Article  ADS  Google Scholar 

  73. Akahane, Y., Asano, T., Song B. S. & Noda, S. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express 13, 1202–1214 (2005).

    Article  ADS  Google Scholar 

  74. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  75. Asano, T., Song, B. S., Akahane, Y. & Noda, S. Ultrahigh-Q nanocavities in two-dimensional photonic crystal slab. IEEE J. Sel. Top. Quant. Electron. 12, 1123–1134 (2006).

    Article  ADS  Google Scholar 

  76. Kuramochi, E. et al. Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett., 88, 041112 (2006).

    Article  ADS  Google Scholar 

  77. Hagino, H., Takahashi, Y., Tanaka, Y., Asano, T. & Noda, S. in Spring Meeting of Japan Society of Applied Physics, Tokyo, Japan 29a-ZB-2 (2007).

    Google Scholar 

  78. Noda, S. in Symposium on Photonic and Electromagnetic Crystal Structure (PECS-VII), Monterey, USA 15 (2007).

    Google Scholar 

  79. Bayer, M. & Forchel, A. Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys. Rev. B, 65, 041308 (2002).

    Article  ADS  Google Scholar 

  80. Ishi-Hayase, J. et al. Long dephasing time in self-assembled InAs quantum dots at over 1.3mm wavelength. Appl. Phys. Lett. 88, 261907 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency and also in part by Special Coordination Funds for Promoting Science and Technology and Research Grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Noda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon 1, 449–458 (2007). https://doi.org/10.1038/nphoton.2007.141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing