Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terahertz transfer onto a telecom optical carrier

Abstract

In a GaAs crystal, owing to the anomalous dispersion introduced by optical phonon absorption, a phase-matched interaction is possible between a near-infrared beam and a terahertz (THz) wave. We exploit this nonlinear optical process to allow the merging of THz-quantum-cascade-laser and telecom technologies by injecting a telecom beam into a suitably designed THz quantum-cascade laser. Within the optical cavity, the phase and amplitude of the THz wave are recorded onto the near-infrared beam, which can be transported through an optical fibre. We show that the process is phase-matched and can be tuned over the entire telecom range by waveguide engineering. This nonlinear up-conversion technique opens up new possibilities in the optical treatment of THz, by taking advantage of the highly developed telecom technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the scheme and the guided modes.
Figure 2: Principle of phase matching between the NIR and THz ranges.
Figure 3: Engineering the phase-matched point towards 1.56 µm.
Figure 4: Sideband generation at 1.31 µm and 1.56 µm.
Figure 5: Phase-matched curves for the THz sideband generation for single-plasmon and double-metal THz QC lasers.
Figure 6: Group refractive index and optical losses in the NIR.

Similar content being viewed by others

References

  1. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  2. Köhler, R. et al. Terahertz semiconductor heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  3. Carter, S. G. et al. Terahertz electro-optic wavelength conversion in GaAs quantum wells: Improved efficiency and room temperature operation. Appl. Phys. Lett. 84, 840–842 (2004).

    Article  ADS  Google Scholar 

  4. Barbieri, S. et al. 2.9 THz quantum cascade lasers operating up to 70 K in continuous wave. Appl. Phys. Lett. 85, 1674–1676 (2004).

    Article  ADS  Google Scholar 

  5. Raether, H. Surface Plasmons (Springer, Berlin, 1988).

    Google Scholar 

  6. Williams, B. S., Kumar, S., Callebaut, H., Hu, Q. & Reno, J. L. Terahertz quantum-cascade-laser at λ ≈ 100 µm using metal waveguide for mode confinement. Appl. Phys. Lett. 83, 2124–2126 (2006).

    Article  ADS  Google Scholar 

  7. Dhillon, S. S. et al. THz sideband generation at telecom wavelengths in a GaAs-based quntum cascade laser. Appl. Phys. Lett. 87, 071101-1-3 (2005).

  8. Yariv, A. Quantum Electronics, 2nd edn (John Wiley & Sons, New York, 1975).

    Google Scholar 

  9. Berger, V. & Sirtori, C. Non-linear phase matching in semiconductor waveguides. Semicond. Sci. Technol. 19, 964–970 (2004).

    Article  ADS  Google Scholar 

  10. Rafailov, E. U. et al. Second-harmonic generation from a first-order quasi-phase-matched GaAs–AlGaAs waveguide crystal. Opt. Lett. 26, 1984–1986 (2001).

    Article  ADS  Google Scholar 

  11. Yu, X., Scaccabarozzi, L., Harris, J. S. Jr, Kuo, P. S. & Fejer, M. M. Efficient continuous wave second harmonic generation pumped at 1.55 µm in quasi-phase-matched AlGaAs waveguides. Opt. Express 13, 10742–10748 (2005)

    Article  ADS  Google Scholar 

  12. Jäger, M., Stegeman, G. I., Flipse, M. C., Diemeer, M. & Möhlmann, M. Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides. Appl. Phys. Lett. 69, 4139–4141 (1996).

    Article  ADS  Google Scholar 

  13. Ducci, S. et al. Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides. Appl. Phys. Lett. 84, 2974–2976 (2004).

    Article  ADS  Google Scholar 

  14. Malis, O. et al. Improvement of second-harmonic generation in quantum-cascade lasers with true phase matching. Appl. Phys. Lett. 84, 2721–2723 (2004).

    Article  ADS  Google Scholar 

  15. Dhillon, S. S. et al. Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides. Appl. Phys. Lett. 87, 071107 (2005).

  16. Said, A. A. et al. Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe. J. Opt. Soc. Am. B 9, 405–414 (1992).

    Article  ADS  Google Scholar 

  17. Revin, D. G. et al. Measurement of optical losses in mid-infrared semiconductor lasers using Fabry–Pérot transmission oscillations. J. Appl. Phys. 95, 7584–7587 (2004).

    Article  ADS  Google Scholar 

  18. Capasso, F. et al. Quantum cascade lasers: Ultra-high speed operation, optical wireless communication, narrow linewidth, and far-infrared emission. IEEE J. Quantum Electron. 38, 511–532 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported through the European project ‘TERANOVA’. The authors wish to thank D. Dolfi and R. Czarny for their support and useful discussions and A. Ramdane for the loan of the 1.3-µm tunable laser.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Sirtori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhillon, S., Sirtori, C., Alton, J. et al. Terahertz transfer onto a telecom optical carrier. Nature Photon 1, 411–415 (2007). https://doi.org/10.1038/nphoton.2007.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.94

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing