Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Semiconductor quantum light sources

Abstract

Lasers and LEDs have a statistical distribution in the number of photons emitted within a given time interval. Applications exploiting the quantum properties of light require sources for which either individual photons, or pairs, are generated in a regulated stream. Here we review recent research on single-photon sources based on the emission of a single semiconductor quantum dot. In just a few years remarkable progress has been made in generating indistinguishable single photons and entangled-photon pairs using such structures. This suggests that it may be possible to realize compact, robust, LED-like semiconductor devices for quantum light generation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembled quantum dots.
Figure 2: Optical spectrum of a quantum dot.
Figure 3: Scanning-electron-microscope images of semiconductor cavities.
Figure 4: Two-photon interference.
Figure 5: Electrically driven single-photon emission.
Figure 6: Generation of entangled photons by a quantum dot.

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod Physics 74, 145–195 (2001).

    ADS  MATH  Google Scholar 

  2. Dusek, M., Lutkenhaus, N. & Hendrych, M. Progress in Optics Vol. 49 (ed. Wolf, E.) Ch. 5 (Elsevier, The Netherlands, 2006).

    Google Scholar 

  3. Waks, E. et al. Secure communication: Quantum cryptography with a photon turnstile. Nature 420, 762 (2002).

    ADS  Google Scholar 

  4. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  MATH  Google Scholar 

  5. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  Google Scholar 

  6. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Google Scholar 

  7. Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P. & Milburn, G. J. Linear optical quantum computing. Rev. Mod. Phys. 79, 135 (2007).

    ADS  Google Scholar 

  8. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: Beating the standard quantum limit. Science 306, 1330–1336 (2004).

    ADS  Google Scholar 

  9. Brendel, J., Gisin, N., Tittel, W. & Zbinden, H. Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999).

    ADS  Google Scholar 

  10. Shih, Y. H. & Alley, C. O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988).

    ADS  Google Scholar 

  11. Ou, Z. Y. & Mandel, L. Violation of Bell's inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50–53 (1988).

    ADS  MathSciNet  Google Scholar 

  12. Fasel, S. et al. High quality asynchronous heralded single-photon source at telecom wavelength. New J. Phys. 6, 163 (2004).

    ADS  Google Scholar 

  13. Edamatsu, K., Oohata, G., Shimizu, R. & Itoh, T. Generation of ultraviolet entangled photons in a semiconductor. Nature 431, 167–170 (2004).

    ADS  Google Scholar 

  14. Scarani, V., de Riedmatten, H., Marcikic, I., Zbinden, H. & Gisin, N. Eur. Phys. J. D 32, 129–138 (2005).

    ADS  Google Scholar 

  15. Migdall, A., Branning, D. & Casteletto, S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66, 053805 (2002).

    ADS  Google Scholar 

  16. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Single-photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66, 042303 (2002).

    ADS  Google Scholar 

  17. Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).

    ADS  Google Scholar 

  18. Diedrich, F. & Walther, H. Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 203–206 (1987).

    ADS  Google Scholar 

  19. Michler P. et al. in Single Quantum Dots 315 (Springer, Berlin, 2003).

    Google Scholar 

  20. Lounis, B. & Orrit, M. Single photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    ADS  Google Scholar 

  21. Bimberg, D., Grundmann, M. & Ledentsov, N. N. Quantum Dot Heterostructures (Wiley, Chichester, 1999).

    Google Scholar 

  22. Song, H. Z. et al. Site-controlled photoluminescence at telecommunication wavelength from InAs/InP quantum dots. Appl. Phys. Lett. 86, 113118 (2005).

    ADS  Google Scholar 

  23. Atkinson P. et al. Site control of InAs quantum dots using ex-situ electron-beam lithographic patterning of GaAs substrates. Jpn J. Appl. Phys. 45, 2519–2521 (2006).

    ADS  Google Scholar 

  24. Landin, L., Miller, M. S., Pistol, M.-E., Pryor, C. E. & Samuelson, L. Optical studies of individual InAs quantum dots in GaAs: Few-particle effects. Science 280, 262–264 (1998).

    ADS  Google Scholar 

  25. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).

    ADS  Google Scholar 

  26. Kulakovskii, V. D. et al. Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots. Phys. Rev. Lett. 82, 1780–1783 (1999).

    ADS  Google Scholar 

  27. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    ADS  Google Scholar 

  28. Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, Y. Triggered single-photons from a quantum dot. Phys. Rev. Lett 86, 1502–1505 (2001).

    ADS  Google Scholar 

  29. Zwiller, V. et al. Single quantum dots emit single-photons at a time: Antibunching experiments. Appl. Phys. Lett. 78, 2476–2478 (2001).

    ADS  Google Scholar 

  30. Thompson, R. M. et al. Single-photon emission from exciton complexes in individual quantum dots. Phys. Rev. B 64, 201302 (2001).

    ADS  Google Scholar 

  31. Moreau, E. et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001).

    ADS  Google Scholar 

  32. Regelman, D. V. et al. Semiconductor quantum dot: A quantum light source of multicolor photons with tunable statistics. Phys. Rev. Lett. 87, 257401 (2001).

    ADS  Google Scholar 

  33. Kiraz, A. et al. Photon correlation spectroscopy of a single quantum dot. Phys. Rev. B 65, 161303 (2002).

    ADS  Google Scholar 

  34. Shields, A. J., Stevenson, R. M., Thompson, R., Yuan, Z. & Kardynal, B. Nano-Physics and Bio-Electronics (Elsevier, Amsterdam, 2002).

    Google Scholar 

  35. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    ADS  Google Scholar 

  36. Barnes, W. L. et al. Solid-state single-photon sources: Light collection strategies. Euro. Phys. J. D 18, 197–210 (2002).

    ADS  Google Scholar 

  37. Purcell E. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Google Scholar 

  38. Moreau, E. et al. Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001).

    ADS  Google Scholar 

  39. Pelton, M. et al. Efficient source of single-photons: A single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    ADS  Google Scholar 

  40. Vučković, J., Fattal, D., Santori, C., Solomon, G. S. & Yamamoto, Y. Enhanced single-photon emission from a quantum dot in a micropost microcavity. Appl. Phys. Lett. 82, 3596–3598 (2003).

    ADS  Google Scholar 

  41. Bennett, A. J., Unitt, D., Atkinson P., Ritchie D. A. & Shields A. J. High performance single-photon sources from photo-lithographically defined pillar microcavities. Opt. Express 13, 50–55 (2005).

    ADS  Google Scholar 

  42. Yablonovitch, E. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Google Scholar 

  43. Song, B.-S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

    ADS  Google Scholar 

  44. Notomi, M. et al. Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. 88, 041112 (2006).

    ADS  Google Scholar 

  45. Kress, A. et al. Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals. Phys. Rev. B 71, 241304 (2005).

    ADS  Google Scholar 

  46. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    ADS  Google Scholar 

  47. Gevaux, D. G. et al. Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities. Appl. Phys. Lett. 88, 131101 (2006).

    ADS  Google Scholar 

  48. Hennessy et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007).

    ADS  Google Scholar 

  49. Reithmaier, J. P. et al. Strong coupling in a single quantum dot−semiconductor microcavity system. Nature 432, 197–200 (2004).

    ADS  Google Scholar 

  50. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    ADS  Google Scholar 

  51. Peter, E. et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    ADS  Google Scholar 

  52. Le Thomas, N. et al. Cavity QED with semiconductor Nanocrystals. Nano Lett. 6, 557–561 (2006).

    ADS  Google Scholar 

  53. Kuhn, A., Hennrich, M. & Rempe, G. Determinsitic single photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)

    ADS  Google Scholar 

  54. McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

    ADS  Google Scholar 

  55. Cui, G. & Raymer, M. G. Quantum efficiency of single photon sources in cavity-QED strong-coupling regime. Opt. Express 13, 9660–9665 (2005).

    ADS  Google Scholar 

  56. Press, D. et al. Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime. <http://arxiv.org/abs/quant-ph/0609193> (2006).

  57. Lee, K. H. et al. Registration of single quantum dots using cryogenic laser photolithography. Appl. Phys. Lett. 88, 193106 (2006).

    ADS  Google Scholar 

  58. Badolato A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    ADS  Google Scholar 

  59. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    ADS  Google Scholar 

  60. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    ADS  Google Scholar 

  61. Bennett, A. J., Unitt, D., Atkinson, P., Ritchie, D. A. & Shields, A. J. Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source. Opt. Express 13, 7772–7778 (2005).

    ADS  Google Scholar 

  62. Varoutsis, S. et al. Restoration of photon indistinguishability in the emission of a semiconductor quantum dot. Phys. Rev. B 72, 041303 (2005).

    ADS  Google Scholar 

  63. Laurent, S. et al. Indistinguishable single photons from a single quantum dot in two-dimensional photonic crystal cavity. Appl. Phys. Lett. 87, 163107 (2005).

    ADS  Google Scholar 

  64. Kammerer C. et al. Interferometric correlation spectroscopy in single quantum dots. Appl. Phys. Lett. 81, 2737–2739 (2002).

    ADS  Google Scholar 

  65. Fattal, D., Diamanti, E., Inoue, K. & Yamamoto, Y. Quantum teleportation with a quantum dot single-photon source. Phys. Rev. Lett. 92, 037904 (2004).

    ADS  Google Scholar 

  66. Fattal, D. et al. Entanglement formation and violation of Bell's inequality with a semiconductor single-photon source. Phys. Rev. Lett. 92, 037903 (2004).

    ADS  Google Scholar 

  67. Imamoglu, A. & Yamamoto, Y. Turnstile device for heralded single photons: Coulomb blockade of electron and hole tunneling in quantum confined p-i-n heterojunctions. Phys. Rev. Lett. 72, 210–213 (1994).

    ADS  Google Scholar 

  68. Cecchini, M. et al. Surface acoustic wave-driven planar light-emitting device. Appl. Phys. Lett. 85, 3020–3022 (2005).

    ADS  Google Scholar 

  69. Gell, J. R. et al. Surface acoustic wave driven luminescence from a lateral p-n junction. Appl. Phys. Lett. 89, 243505 (2006).

    ADS  Google Scholar 

  70. Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

    ADS  Google Scholar 

  71. Bennett, A. J. et al. A microcavity single-photon emitting diode. Appl. Phys. Lett. 86, 181102 (2005).

    ADS  Google Scholar 

  72. Abram, I., Robert, I. & Kuszelewicz, R. Spontaneous emission control in semiconductor microcavities with metallic or Bragg mirrors. IEEE. J. Quant. Elect. 34, 71–76 (1998).

    ADS  Google Scholar 

  73. Bennett, A. J. et al. Electrical control of the uncertainty in the time of single-photon emission events. Phys. Rev. B 72, 033316 (2005).

    ADS  Google Scholar 

  74. Ellis, D., Bennett, A. J., Shields, A. J., Atkinson, P. & Ritchie, D. A. Electrically addressing a single self-assembled quantum dot. Appl. Phys. Lett. 88, 133509 (2006).

    ADS  Google Scholar 

  75. Lochman, A. Electrically driven single quantum dot polarised single photon emitter. Electron. Lett. 42, 774–775 (2006).

    Google Scholar 

  76. Kako, S. et al. A gallium nitride single-photon source operating at 200 K. Nature Mater. 5, 887–892 (2006).

    ADS  Google Scholar 

  77. Sebald, K. et al. Single-photon emission of CdSe quantum dots at temperatures up to 200 K. Appl. Phys. Lett. 81, 2920–2922 (2002).

    ADS  Google Scholar 

  78. Aichele, T., Zwiller, V. & Benson O. Visible single-photon generation from semiconductor quantum dots. New J. Phys. 6, 90 (2004).

    ADS  Google Scholar 

  79. Le Ru, E. C., Fack, J. & Murray, R. Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots. Phys. Rev. B 67, 245318 (2003).

    ADS  Google Scholar 

  80. Ward, M. B. On-demand single-photon source for 1.3 μm telecom fiber. Appl. Phys. Lett. 86, 201111 (2005).

    ADS  Google Scholar 

  81. Zinoni, C. et al. Time-resolved and antibunching experiments on single quantum dots at 1300nm. Appl. Phys. Lett. 88, 131102 (2006).

    ADS  Google Scholar 

  82. Miyazawa, T. et al. Single-photon generation in the 1.55-μm optical-fiber band from an InAs/InP quantum dot. Jpn J. Appl. Phys. 44, L620–622 (2005).

    Google Scholar 

  83. Ward, M. B. et al. Electrically driven telecommunication wavelength single-photon source. Appl. Phys. Lett. 90, 063512 (2007).

    ADS  Google Scholar 

  84. Stevenson, R. M. Quantum dots as a photon source for passive quantum key encoding. Phys. Rev. B 66, 081302 (2002).

    ADS  Google Scholar 

  85. Santori, C., Fattal, D., Pelton, M., Solomon, G. S. & Yamamoto, Y. Polarization-correlated photon pairs from a single quantum dot. Phys. Rev. B 66, 045308 (2002).

    ADS  Google Scholar 

  86. Ulrich, S. M., Strauf, S., Michler, P., Bacher, G. & Forchel, A. Triggered polarization-correlated photon pairs from a single CdSe quantum dot. Appl. Phys. Lett. 83, 1848–1850 (2003).

    ADS  Google Scholar 

  87. van Kesteren, H. W., Cosman, E. C., van der Poel, W. A. J. A. & Foxon C. T. Fine structure of excitons in type-II GaAs/AlAs quantum wells. Phys. Rev. B 41, 5283–5292 (1990).

    ADS  Google Scholar 

  88. Blackwood, E., Snelling, M. J., Harley, R. T., Andrews, S. R. & Foxon, C. T. B. Exchange interaction of excitons in GaAs heterostructures. Phys. Rev. B 50, 14246–14254 (1994).

    ADS  Google Scholar 

  89. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    ADS  Google Scholar 

  90. Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell's theorem. Phys. Rev. Lett. 47, 460–463 (1981).

    ADS  Google Scholar 

  91. Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006).

    ADS  Google Scholar 

  92. Young, R. J. et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006).

    ADS  Google Scholar 

  93. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    ADS  Google Scholar 

  94. Young, R. J. et al. Inversion of exciton level splitting in quantum dots. Phys. Rev. B 72, 113305 (2005).

    ADS  Google Scholar 

  95. Seguin, R. et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys. Rev. Lett. 95, 257402 (2005).

    ADS  Google Scholar 

  96. Stevenson, R. M. et al. Magnetic-field-induced reduction of the exciton polarisation splitting in InAs quantum dots. Phys. Rev. B 73, 033306 (2006).

    ADS  Google Scholar 

  97. Seidl, S., Kroner, M., Högele, A. & Karrai, K. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Phys. Lett. 88, 203113 (2006).

    ADS  Google Scholar 

  98. Gerardot, B. D. et al. Manipulating exciton fine-structure in quantum dot with a lateral electric field. <http://arxiv.org/abs/cond-mat/0608711> (2006).

  99. Kowalik, K. et al. Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots. Appl. Phys. Lett. 86, 041907 (2005).

    ADS  Google Scholar 

  100. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, Berlin, 1994).

    MATH  Google Scholar 

  101. Hanbury Brown, R. & Twiss, R. Q. A new type of interferometer for use in radio astronomy. Phil. Mag. 45, 663 (1954).

    ADS  Google Scholar 

  102. Santori, C. et al. Submicrosecond correlations in photoluminescence from InAs quantum dots. Phys. Rev. B 69, 205324 (2004).

    ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mark Stevenson, Robert Young, Anthony Bennett and Martin Ward for their comments during the preparation of the manuscript and the UK Department of Trade and Industry 'Optical Systems for Digital Age', Engineering and Physical Sciences Research Council and European Commission Future and Emerging Technologies arm of the 1st programme for supporting research on quantum light sources.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shields, A. Semiconductor quantum light sources. Nature Photon 1, 215–223 (2007). https://doi.org/10.1038/nphoton.2007.46

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing