Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lasing in metallic-coated nanocavities

Abstract

Metallic cavities can confine light to volumes with dimensions considerably smaller than the wavelength of light. It is commonly believed, however, that the high losses in metals are prohibitive for laser operation in small metallic cavities. Here we report for the first time laser operation in an electrically pumped metallic-coated nanocavity formed by a semiconductor heterostructure encapsulated in a thin gold film. The demonstrated lasers show a low threshold current and their dimensions are smaller than the smallest electrically pumped lasers reported so far. With dimensions comparable to state-of-the-art electronic transistors and operating at low power and high speed, they are a strong contender as basic elements in digital photonic very large-scale integration. Furthermore we demonstrate that metallic-coated nanocavities with modal volumes smaller than dielectric cavities can have moderate quality factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the cavity formed by a semiconductor pillar encapsulated in gold.
Figure 2: Fabricated laser.
Figure 3: Measurement results for the fabricated laser.
Figure 4: Near-field radiation patterns of the laser.
Figure 5: Comparison of rate-equation-model predictions to 77 K measurements.

Similar content being viewed by others

References

  1. Park, H. G. et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004).

    Article  ADS  Google Scholar 

  2. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  3. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).

    Article  ADS  Google Scholar 

  4. Scheuer, J., Green, W. M. J., DeRose, G. A. & Yariv, A. Lasing from a circular Bragg nanocavity with an ultrasmall modal volume. Appl. Phys. Lett. 86, 251101 (2005).

    Article  ADS  Google Scholar 

  5. Nozaki, K. & Baba, T. Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers. Appl. Phys. Lett. 88, 211101 (2006).

    Article  ADS  Google Scholar 

  6. Ishii, S., Nakagawa, A. & Baba, T. Modal characteristics and bistability in twin microdisk photonic molecule lasers. IEEE J. Sel. Top. Quant. Electron. 12, 71–77 (2006).

    Article  ADS  Google Scholar 

  7. Hill, M. T. et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 206–208 (2004).

    Article  ADS  Google Scholar 

  8. Maier, S. A. Effective mode volume of nanoscale plasmon cavities. Opt. Quant. Electron. 38, 257–267 (2006).

    Article  Google Scholar 

  9. Taflove, A. & Hagness, S. C. Computational Electrodynamics, The Finite-Difference Time-Domain Method 2nd edn (Artech House, Boston, 2000).

    MATH  Google Scholar 

  10. Judkins, J. B. & Ziolkowski, R. W. Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings. J. Opt. Soc. Am. A 12, 1974–1983 (1995).

    Article  ADS  Google Scholar 

  11. Theye, M. L. Investigation of the optical properties of Au by means of thin semitransparent films. Phys. Rev. B 2, 3060–3078 (1970).

    Article  ADS  Google Scholar 

  12. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  13. Prade, B. & Vinet, J. Y. Guided optical waves in fibers with negative dielectric constant. J. Lightwave Technol. 12, 6–18 (1994).

    Article  ADS  Google Scholar 

  14. Annino, G., Yashiro, H., Cassettari, M. & Martinelli, M. Properties of trapped electromagnetic modes in coupled waveguides. Phys. Rev. B 73, 125308 (2006).

    Article  ADS  Google Scholar 

  15. Coccioli, R., Boroditsky, M., Kim, K. W., Rahmat-Samii, Y. & Yablonovitch, E. Smallest possible electromagnetic mode volume in a dielectric cavity. IEE Proc. Optoelectron. 145, 391–397 (1998).

    Article  Google Scholar 

  16. Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nature Phys. 2, 484–488 (2006).

    Article  ADS  Google Scholar 

  17. Agrawal, G. P. & Dutta, N. K. Semiconductor Lasers 2nd edn (Van Nostrand Reinhold, New York, 1993).

    Google Scholar 

  18. Omar, M. Elementary Solid State Physics (Addison-Wesley, Massachusetts, 1975).

    Google Scholar 

  19. Lide, D. R. Handbook of Chemistry and Physics 25th edn (CRC, New York, 1996).

    Google Scholar 

  20. Englund D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Article  ADS  Google Scholar 

  21. Fujita, M. & Baba, T. Ultrasmall and ultralow threshold GaInAsP–InP microdisk injection lasers: Design, fabrication, lasing characteristics and spontaneous emission factor. IEEE J. Sel. Top. Quant. Electron. 5, 673–681 (1999).

    Article  ADS  Google Scholar 

  22. Hill, M. T. et al. Integrated two-state AWG-based multiwavelength laser. IEEE Photon. Technol. Lett. 17, 956–958 (2005).

    Article  ADS  Google Scholar 

  23. Asada, M., Miyamoto, Y. & Suematsu, Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quant. Electron. QE-22, 1915–1921 (1986).

    Article  ADS  Google Scholar 

  24. Slusher R. E. et al. Threshold characteristics of semiconductor microdisk lasers. Appl. Phys. Lett. 63, 1310–1312 (1993).

    Article  ADS  Google Scholar 

  25. Chuang, S. L., O'Gorman, J. & Levi, A. F. J. Amplified spontaneous emission and carrier pinning in laser diodes. IEEE J. Quant. Electron. 29, 1631–1639 (1993).

    Article  ADS  Google Scholar 

  26. Bjork, B., Karlsson, A. & Yamamoto, Y. On the linewidth of microcavity lasers. Appl. Phys. Lett. 60, 304–306 (1991).

    Article  ADS  Google Scholar 

  27. Gerard, J.-M. & Gayral, B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid state microcavities. J. Lightwave Technol. 17, 2089–2095 (1999).

    Article  ADS  Google Scholar 

  28. Yablonovitch, E., Bhat, R., Zah, C. E., Gmitter, T. J. & Koza, M. A. Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces. Appl. Phys. Lett. 60, 371–373 (1992).

    Article  ADS  Google Scholar 

  29. Forchel, A., Menschig, A., Maile, B. E., Leier, H. & Germann, R. Transport and optical properties of semiconductor quantum wires. J. Vac. Sci. Technol. B 9, 444–450 (1991).

    Article  Google Scholar 

  30. Zielinski, E., Schweizer, H. & Streubel, K. Excitonic transitions and exciton damping processes in InGaAs/InP. J. Appl. Phys. 59, 2196–2204 (1986).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Organisation for Scientific Research (NWO) through the NRC photonics grant (awarded to G.D.K., M.K.S. and J.H.W.). Y.H.L. would like to acknowledge support from NRL/GRL project. We thank D. Lenstra for his comments on the experimental results.

Author information

Authors and Affiliations

Authors

Contributions

M.T.H. discovered the nanolaser structures reported here and performed design, fabrication, characterization and manuscript preparation. Y.S.O., B.S., Y.Z., T.d.V., E.J.G. and M.K.S. contributed to process development. R.N., P.J.v.V. and F.W.M.v.O. were responsible for the epitaxial growth. Y.S.O., R.N., J.P.T. and H.d.W. contributed to studies on surface recombination. T.J.E assisted with characterization. Y.H.L. and S.H.K. contributed with expertise on nanolaser modelling. M.K.S. assisted with writing the manuscript.

Corresponding author

Correspondence to Martin T. Hill.

Supplementary information

Supplementary Information

Supplementary information (PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, M., Oei, YS., Smalbrugge, B. et al. Lasing in metallic-coated nanocavities. Nature Photon 1, 589–594 (2007). https://doi.org/10.1038/nphoton.2007.171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing