Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optical negative-index metamaterials

Abstract

Artificially engineered metamaterials are now demonstrating unprecedented electromagnetic properties that cannot be obtained with naturally occurring materials. In particular, they provide a route to creating materials that possess a negative refractive index and offer exciting new prospects for manipulating light. This review describes the recent progress made in creating nanostructured metamaterials with a negative index at optical wavelengths, and discusses some of the devices that could result from these new materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Terahertz and optical-magnetic structures.
Figure 2: Optical negative-index materials.
Figure 3: New designs for NIMs.

Similar content being viewed by others

References

  1. Schuster, A. An Introduction to the Theory of Optics (Arnold, London, 1904).

    MATH  Google Scholar 

  2. Lamb, H. On group-velocity. Proc. Lond. Math. Soc. 1, 473–479 (1904).

    Article  MathSciNet  MATH  Google Scholar 

  3. Mandel'shtam, L. I. Group velocity in a crystal lattice. Zh. Eksp. Teor. Fiz. 15, 475–478 (1945).

    Google Scholar 

  4. Sivukhin, D. V. The energy of electromagnetic waves in dispersive media. Opt. Spektrosk 3, 308–312 (1957).

    Google Scholar 

  5. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  6. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  7. Kosaka, H. et al. Superprism phenomena in photonic crystals. Phys. Rev. B 58, 10096–10099 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  8. Notomi, M. Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, R10696–R10705 (2000).

    Article  ADS  Google Scholar 

  9. Gralak, B., Enoch, S. & Tayeb, G. Anomalous refractive properties of photonic crystals. J. Opt. Soc. Am. A 17, 1012–1020 (2000).

    Article  ADS  Google Scholar 

  10. Luo, C. et al. All-angle negative refraction without negative effective index. Phys. Rev. B 65, 201104 (2002).

    Article  ADS  Google Scholar 

  11. Berrier, A. et al. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys. Rev. Lett. 93, 073902 (2004).

    Article  ADS  Google Scholar 

  12. Smith, D. R. et al. Limitations on sub-diffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506–1508 (2003).

    Article  ADS  Google Scholar 

  13. Luo, C. et al. Sub-wavelength imaging in photonic crystals. Phys. Rev. B 68, 045115 (2003).

    Article  ADS  Google Scholar 

  14. Lu, Z. et al. Three-dimensional sub-wavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies. Phys. Rev. Lett. 95, 153901 (2005).

    Article  ADS  Google Scholar 

  15. Eleftheriades, G. V., Iyer, A. K. & Kremer, P. C. Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microwave Theory Tech. 50, 2702–2712 (2002).

    Article  ADS  Google Scholar 

  16. Alù, A. & Engheta, N. Optical nanotransmission lines: Synthesis of planar left-handed metamaterials in the infrared and visible regimes. J. Opt. Soc. Am. B 23, 571–583 (2006).

    Article  ADS  Google Scholar 

  17. Depine, R. A. & Lakhtakia, A. A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity. Microwave Opt. Technol. Lett. 41, 315–316 (2004).

    Article  Google Scholar 

  18. McCall, M. W., Lakhtakia, A. & Weiglhofer, W. S. The negative index of refraction demystified. Eur. J. Phys. 23, 353–359 (2002).

    Article  Google Scholar 

  19. Agranovich, V. M. et al. Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B 69, 165112 (2004).

    Article  ADS  Google Scholar 

  20. Podolskiy, V. A. & Narimanov, E. E. Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 71, 201101 (2005).

    Article  ADS  Google Scholar 

  21. Shin, H. & Fan, S. All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure. Phys. Rev. Lett. 96, 073907 (2006).

    Article  ADS  Google Scholar 

  22. Pendry, J. B. et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

    Article  ADS  Google Scholar 

  23. Smith, D. R. et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  ADS  Google Scholar 

  24. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  25. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).

    Article  ADS  Google Scholar 

  26. Zhang, S. et al. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys. Rev. Lett. 94, 037402 (2005).

    Article  ADS  Google Scholar 

  27. Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).

    Article  ADS  Google Scholar 

  28. Enkrich, C. et al. Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95, 203901 (2005).

    Article  ADS  Google Scholar 

  29. Kildishev, A. V. et al. Negative refractive index in optics of metal–dielectric composites. J. Opt. Soc. Am. B 23, 423–433 (2006).

    Article  ADS  Google Scholar 

  30. Shvets, G. Urzhumov, Y. A. Negative index meta-materials based on two-dimensional metallic structures. J. Opt. A 8, S122–S130 (2006).

    Article  ADS  Google Scholar 

  31. Yuan, H.-K. et al. A negative permeability material at red light. Preprint at <http://arxiv.org/abs/physics/0610118> (2006).

    Google Scholar 

  32. International Commission on Illumination (1987): International Lighting Vocabulary 4th edn (CIE, Vienna, 1987).

  33. Podolskiy, V. A., Sarychev, A. K. & Shalaev, V. M. Plasmon modes in metal nanowires and left-handed materials. J. Nonlin. Opt. Phys. Mater. 11, 65–74 (2002).

    Article  ADS  Google Scholar 

  34. Grigorenko, A. N. et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005).

    Article  ADS  Google Scholar 

  35. Grigorenko, A. Negative refractive index in artificial metamaterials. Opt. Lett. 31, 2483–2485 (2006).

    Article  ADS  Google Scholar 

  36. Kildishev, A. V. et al. Comment on 'Negative refractive index in artificial metamaterials'. Preprint at <http://arxiv.org/abs/physics/0609234> (2006).

  37. Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).

    Article  ADS  Google Scholar 

  38. Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    Article  ADS  Google Scholar 

  39. Lagarkov, A. N. & Sarychev, A. K. Electromagnetic properties of composites containing elongated conducting inclusions. Phys. Rev. B 53, 6318–6336 (1996).

    Article  ADS  Google Scholar 

  40. Panina, L. V., Grigorenko, A. N. & Makhnovskiy, D. P. Optomagnetic composite medium with conducting nanoelements. Phys. Rev. B 66, 155411 (2002).

    Article  ADS  Google Scholar 

  41. Podolskiy, V. A., Sarychev, A. K. & Shalaev, V. M. Plasmon modes and negative refraction in metal nanowire composites. Opt. Express 11, 735–745 (2003).

    Article  ADS  Google Scholar 

  42. Engheta, N., Salandrino, A. & Alu, A. Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 095504 (2005).

    Article  ADS  Google Scholar 

  43. Zhang, S. et al. Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies. J. Opt. Soc. Am. B 23, 434–438 (2006).

    Article  ADS  Google Scholar 

  44. Dolling, G. et al. Low-loss negative-index metamaterial at telecommunication wavelengths. Opt. Lett. 31, 1800–1802 (2006).

    Article  ADS  Google Scholar 

  45. Zhang, S. et al. Near-infrared double negative metamaterials. Opt. Express 13, 4922–4930 (2005).

    Article  ADS  Google Scholar 

  46. Dolling, G. et al. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).

    Article  ADS  Google Scholar 

  47. Dolling G., Wegener, M., Soukoulis, C. M. & Linden, S. Negative-index material at 780 nm wavelength. Preprint at <http://arxiv.org/abs/physics/0607135> (2006).

  48. Zhou, J. et al. Negative index materials using simple short wire pairs. Phys. Rev. B 73, 041101(R) (2006).

    Article  ADS  Google Scholar 

  49. Chettiar, U. K. et al. Negative index metamaterial combining magnetic resonators with metal films. Opt. Express 14, 7872–7877 (2006).

    Article  ADS  Google Scholar 

  50. Zhang, S. et al. Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. Opt. Express 14, 6778–6787 (2006).

    Article  ADS  Google Scholar 

  51. Padilla, W. J. et al. Dynamical electric and magnetic metamaterial response at THz frequencies, Phys. Rev. Lett. 96, 107401 (2006).

    Article  ADS  Google Scholar 

  52. Khoo, I. C. Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).

    Google Scholar 

  53. Khoo, I. C. et al. Supra-nonlinear photorefractive response of single-wall carbon nanotube- and C60-doped nematic liquid crystal. Appl. Phys. Lett. 82, 3587–3589 (2003).

    Article  ADS  Google Scholar 

  54. Podolskiy, V. A. & Narimanov, E. E. Near-sighted superlens, Opt. Lett. 30, 75–77 (2005).

    Article  ADS  Google Scholar 

  55. Sirtori, C. et al. Long-wavelength (λ = 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons. Opt. Lett. 23, 1366–1368 (1998).

    Article  ADS  Google Scholar 

  56. Tredicucci, A. et al. Single-mode surface-plasmon laser. Appl. Phys. Lett. 76, 2164–2166 (2000).

    Article  ADS  Google Scholar 

  57. Sudarkin, A. N. & Demkovich, P. A. Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium. Sov. Phys. Tech. Phys. 34, 764–766 (1989).

    Google Scholar 

  58. Nezhad, M. P., Tetz, K. & Fainman, Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Express 12, 4072–4079 (2004).

    Article  ADS  Google Scholar 

  59. Avrutsky, I. Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain. Phys. Rev. B 70, 155416 (2004).

    Article  ADS  Google Scholar 

  60. Seidel, J., Grafströ m, S. & Eng, L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett. 94, 177401 (2005).

    Article  ADS  Google Scholar 

  61. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article  ADS  Google Scholar 

  62. Lawandy, N. M. Localized surface plasmon singularities in amplifying media. Appl. Phys. Lett. 85, 5040–5042 (2004).

    Article  ADS  Google Scholar 

  63. Noginov, M. A. et al. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt. Lett. 31, 3022–3024 (2006).

    Article  ADS  Google Scholar 

  64. Ramakrishna, S. A. & Pendry, J. B. Removal of absorption and increase in resolution in a near-field lens via optical gain. Phys. Rev. B 67, 201101 (2003).

    Article  ADS  Google Scholar 

  65. Shamonina E. et al. Imaging, compression and Poynting vector streamlines for negative permittivity materials. Elec. Lett. 37, 1243–1244 (2001).

    Article  Google Scholar 

  66. Espinola, R. L. et al. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express 12, 3713–3718 (2004).

    Article  ADS  Google Scholar 

  67. Dulkeith, E. et al. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys. Rev. Lett. 89, 203002 (2002).

    Article  ADS  Google Scholar 

  68. Imahori, H. et al. Structure and photophysical properties of porphyrin-modified metal nanoclusters with different chain lengths. Langmuir 20, 73–81 (2004).

    Article  Google Scholar 

  69. Stehr, J. et al. A low threshold polymer laser based on metallic nanoparticle gratings. Adv. Mater. 15, 1726 (2003).

    Article  Google Scholar 

  70. Klar, T. A. et al. Negative-index metamaterials: Going optical. IEEE J. Selec. Top. Quant. Electron. 12, (2006).

  71. Larkin, I. A. & Stockman, M. I. Imperfect perfect lens. Nano Lett. 5, 339–343 (2005).

    Article  ADS  Google Scholar 

  72. Gabitov, I. R. et al. Double-resonant optical materials with embedded metal nanostructures. J. Opt. Soc. Am. B 23, 535–542 (2006).

    Article  ADS  Google Scholar 

  73. Popov, A. K. & Shalaev, V. M. Negative-index metamaterials: Second-harmonic generation, Manley-Rowe relations and parametric amplification. Appl. Phys. B 84, 131–137 (2006).

    Article  ADS  Google Scholar 

  74. Shadrivov, I. V., Zharov, A. A. & Kivshar, Y. S. Second-harmonic generation in nonlinear left-handed metamaterials. J. Opt. Soc. Am. B 23, 529–534 (2006).

    Article  ADS  Google Scholar 

  75. Zharov, A. A. et al. Subwavelength imaging with opaque nonlinear left-handed lenses. Appl. Phys. Lett. 87, 091104 (2005).

    Article  ADS  Google Scholar 

  76. Klein, M. W. et al. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).

    Article  ADS  Google Scholar 

  77. Litchinitser, N. M. et al. Effect of negative-index thin film on optical bistability. Opt. Lett. (in the press); preprint at <http://arxiv.org/abs/physics/0607177>.

  78. Popov, A. K. & Shalaev V. M. Compensating losses in negative-index metamaterials with optical parametric amplification. Opt. Lett. 31, 2169–2171 (2006).

    Article  ADS  Google Scholar 

  79. Fang, N., Lee, H. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  80. Melville, D. O. S. & Blaikie, R. J. & Wolf, C. R. Submicron imaging with a planar silver lens. Appl. Phys. Lett. 84, 4403–4405 (2004).

    Article  ADS  Google Scholar 

  81. Melville, D. O. S., Blaikie, R. J. Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005).

    Article  ADS  Google Scholar 

  82. Taubner T. et al. Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).

    Article  ADS  Google Scholar 

  83. Cai, W., Genov, D. A. & Shalaev, V. M. Superlens based on metal-dielectric composites. Phys. Rev. B 72, 193101 (2005).

    Article  ADS  Google Scholar 

  84. Durant, S., Liu, Z., Fang, N. & Zhang, X. Theory of optical imaging beyond the diffraction limit with a far-field superlens. Proc. SPIE 6323, 63231H (2006).

    Article  ADS  Google Scholar 

  85. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    Article  ADS  Google Scholar 

  86. Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B 74, 075103 (2006).

    Article  ADS  Google Scholar 

  87. Nicorovici, N. A., McPhedran, R. C. & Milton, G. W. Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479–8482 (1994).

    Article  ADS  Google Scholar 

  88. Milton, G. W. et al. A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc. Roy. Soc. A 461, 3999–4034 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 95, 016623 (2005).

    Article  ADS  Google Scholar 

  90. Garcia de Abajo, F. J. et al. Tunneling mechanism of light transmission through metal films. Phys. Rev. Lett. 95, 067403 (2005).

    Article  ADS  Google Scholar 

  91. Pendry, J. B., Shurig, D. & Smith D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Leonhardt, U. Optical conforming mapping. Science 312, 1777–1780 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  94. Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with non-magnetic metamaterials. Preprint at <http://arxiv.org/abs/physics/0611242> (2006).

  95. Liu, Z. et al. Rapid growth of evanescent wave with a silver superlens. Appl. Phys. Lett. 83, 5184–5186 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author highly appreciates contributions from and useful discussions with A. V. Kildishev, V. P. Drachev, U. K. Chettiar, W. Cai, H.-K. Yuan, T. A. Klar, M. D. Thoreson, I. C. Khoo, A. K. Popov, A. E. Boltasseva, N. M. Litchinitser, M. A. Noginov, A. K. Sarychev, X. Zhang and I. R. Gabitov. This work was supported by ARO MURI Award 50432-PH-MUR and PREM DMR-0611430.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalaev, V. Optical negative-index metamaterials. Nature Photon 1, 41–48 (2007). https://doi.org/10.1038/nphoton.2006.49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2006.49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing