Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vector field microscopic imaging of light

Abstract

The behaviour of nanoscale optical devices in a variety of burgeoning research areas, such as photonic crystals1,2,3,4, near-field microscopy5,6,7, surface plasmonics8,9,10,11 and negative index of refraction materials12,13,14,15,16, is governed by strongly localized electromagnetic waves. Although such light waves are analogous to the localized electronic wavefunctions that determine the properties of solid-state quantum devices, unlike matter waves, these optical fields are vectorial in nature, and their orientation and magnitude vary on a subwavelength scale. In order to obtain a complete description of light in nanoscale devices, it is therefore crucial to be able to map the field vectors with subwavelength resolution. Thus far, local field vectors have mostly been studied by theoretical means. Here, we describe and demonstrate the first experimental mapping of vector fields of light on the nanoscale. By directly accessing the local field in its entirety, new capabilities and applications in nanophotonics may emerge.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vector-field mapping of an evanescent standing wave.
Figure 2: Vector-field mapping of the surface-plasmon polariton standing wave.
Figure 3: Vector-field mapping of light emerging from a single slit.

Similar content being viewed by others

References

  1. Yablonovich, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  2. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  3. Noda, S., Chutinan, A. & Imada, M. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608–610 (2000).

    Article  ADS  Google Scholar 

  4. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals (Princeton, New York, 1995).

    MATH  Google Scholar 

  5. Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984).

    Article  ADS  Google Scholar 

  6. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993).

    Article  ADS  Google Scholar 

  7. Betzig, E., Trautman, J. K., Weiner, J. S., Harris, T. D. & Wolfe, R. Polarization contrast in near-field scanning optical microscopy. Appl. Opt. 22, 4563–4568 (1992).

    Article  ADS  Google Scholar 

  8. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  Google Scholar 

  9. García-Vidal, F. J. & Martín-Moreno, L. Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys. Rev. B 66, 155412 (2002).

    Article  ADS  Google Scholar 

  10. Hibbins, A. P., Evans, B. R. & Sambles, J. R. Experimental verification of designer surface plasmons. Science 308, 670–672 (2005).

    Article  ADS  Google Scholar 

  11. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    Article  ADS  Google Scholar 

  12. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  13. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  14. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  15. Grigorenko, A. N. et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005).

    Article  ADS  Google Scholar 

  16. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  17. Maxwell, J. C. in The Dynamical Theory of the Electromagnetic Field (ed. Torrance T. F. ) 4–10 (Wipf and Stock Publishers, Eugene, Oregon, 1996).

    Google Scholar 

  18. Faraday M. Experimental Researches in Electricity Vol. 1, 380–386 (Dover Publications, New York, 1965).

    Google Scholar 

  19. Grosjean, T. & Courjon, D. Photopolymers as vectorial sensors of the electric field. Opt. Express 14, 2203–2210 (2006).

    Article  ADS  Google Scholar 

  20. Zenhausern, F., O'Boyle, M. P. & Wickramasinghe, H. K. Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623–1625 (1994).

    Article  ADS  Google Scholar 

  21. Kawata, S. & Inouye, Y. Scanning probe optical microscopy using a metallic probe tip. Ultramicroscopy 57, 313–317 (1995).

    Article  Google Scholar 

  22. Kalkbrenner, T., Ramstein, M., Mlynek, J. & Sandoghdar, V. A single gold particle as a probe for apertureless scanning near-field optical microscopy. J. Microsc. 202, 72–76 (2001).

    Article  MathSciNet  Google Scholar 

  23. Bouhelier, A., Beversluis, M. R. & Novotny, L. Near-field scattering of longitudinal fields. Appl. Phys. Lett. 82, 4596–4598 (2003).

    Article  ADS  Google Scholar 

  24. Kalkbrenner, T., Håkanson, U. & Sandoghdar, V. Tomographic plasmon spectroscopy of a single gold nanoparticle. Nano Lett. 4, 2309–2314 (2004).

    Article  ADS  Google Scholar 

  25. Lévêque, G., Colas des Francs, G. & Girard, C. Polarization state of the optical near field. Phys. Rev. E 65, 036701 (2002).

    Article  ADS  Google Scholar 

  26. Kim, D. S. et al. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003)

    Article  ADS  Google Scholar 

  27. Lalanne, P., Hugonin, J. P. & Rodier, J. C. Theory of surface plasmon generation at nanoslit apertures. Phys. Rev. Lett. 95, 263902 (2005).

    Article  ADS  Google Scholar 

  28. Yee, K. S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans Ant. Prop. 14, 302–307 (1966).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge research support from the Korean government (KOSEF, MOE, MOST, MOCI, and Seoul R&BD Program) and the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Kihm, H., Kihm, J. et al. Vector field microscopic imaging of light. Nature Photon 1, 53–56 (2007). https://doi.org/10.1038/nphoton.2006.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2006.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing