Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereometamaterials

Abstract

The subdiscipline of chemistry that studies molecular structures in three dimensions is called stereochemistry. One important aspect of stereochemistry is stereoisomers: materials with the same chemical formula but different spatial arrangements of atoms within molecules. The relative positions of atoms have great influence on the properties of chemical substances. Here, in analogy to stereoisomers in chemistry, we propose a new concept in nanophotonics, namely stereometamaterials, which refer to metamaterials with the same constituents but different spatial arrangements. As a model system of stereometamaterials, we theoretically and experimentally study meta-dimers, which consist of a stack of two identical split-ring resonators in each unit cell with various twist angles. The interplay of electric and magnetic interactions plays a crucial role for the optical properties. Specifically, the influence of higher-order electric multipoles becomes clearly evident. The twisting of stereometamaterials offers a way to engineer complex plasmonic nanostructures with a tailored electromagnetic response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural geometry and numerical simulation.
Figure 2: Numerical current and magnetic field distributions.
Figure 3: Twisting dispersion of the stereo-SRR dimer metamaterials.
Figure 4: Field-emission electron microscopy images and experimental measurement.

Similar content being viewed by others

References

  1. Robinson, M. J. T. Organic Stereochemistry (Oxford Univ. Press, 2000).

    Google Scholar 

  2. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  Google Scholar 

  3. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    Article  Google Scholar 

  4. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  5. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ɛ and μ. Sov. Phys. Usp. 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  6. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  7. Liu, N. et al. Three-dimensional photonic metamaterials at optical frequencies. Nature Mater. 7, 31–37 (2008).

    Article  ADS  Google Scholar 

  8. Liu, N. et al. Plasmon hybridization in stacked cut-wire metamaterials. Adv. Mater. 19, 3628–3632 (2007).

    Article  Google Scholar 

  9. Liu, N., Fu, L. W., Kaiser, S., Schweizer, H. & Giessen, H. Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials. Adv. Mater. 20, 3859–3865 (2008).

    Article  Google Scholar 

  10. Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    Article  ADS  Google Scholar 

  11. Wang, H., Brandl, D. W., Le, F., Nordlander, P. & Halas, N. J. Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006).

    Article  ADS  Google Scholar 

  12. Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004).

    Article  ADS  Google Scholar 

  13. Liu, N., Kaiser, S. & Giessen, H. Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv. Mater. 20, 4521–4525 (2008).

    Article  Google Scholar 

  14. Liu, H. et al. Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Phys. Rev. B 76, 073101 (2007).

    Article  ADS  Google Scholar 

  15. Rockstuhl, C. et al. On the reinterpretation of resonances in split-ring-resonators at normal incidence. Opt. Express 14, 8827–8836 (2006).

    Article  ADS  Google Scholar 

  16. Hao, F. et al. Shedding light on dark plasmons in gold nanorings. Chem. Rev. Lett. 458, 262–266 (2008).

    ADS  Google Scholar 

  17. Zhang, S. et al. Demonstration of metal–dielectric negative-index metamaterials with improved performance at optical frequencies. J. Opt. Soc. Am. B 23, 434–438 (2006).

    Article  ADS  Google Scholar 

  18. Rogacheva, A. V., Fedotov, V. A., Schwanecke, A. S. & Zheludev, N. I. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett. 97, 177401 (2006).

    Article  ADS  Google Scholar 

  19. Decker, M., Klein, M. W., Wegener, M. & Linden, S. Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett. 32, 856–858 (2007).

    Article  ADS  Google Scholar 

  20. Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).

    Article  ADS  Google Scholar 

  21. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  22. Svirko, Y. P. & Zheludev, N. I. Polarization of Light in Nonlinear Optics (Wiley, 1998).

    Google Scholar 

  23. Scharf, T. Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Stockman, T. Pfau, F. Giesselmann and M. Dressel for useful discussions and comments. We thank S. Linden for stimulating us to study the twisted SRRs with different angles. We acknowledge S. Hein for his metamaterial visualizations. We gratefully thank M. Hirscher and U. Eigenthaler at the Max-Planck-Institut für Metallforschung for their electron microscopy support. We acknowledge S. Kaiser, H. Graebeldinger and M. Ubl for technical assistance. This work was financially supported by Deutsche Forschungsgemeinschaft (SPP1113 and FOR557), Landesstiftung BW and BMBF (13N9155 and 13N10146). The research of H.L. and S.Z. was financially supported by the National Natural Science Foundation of China (no. 10604029, no. 10704036 and no. 10874081) and the National Key Projects for Basic Researches of China (no. 2009CB930501, no. 2006CB921804 and no. 2004CB619003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Giessen.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Liu, H., Zhu, S. et al. Stereometamaterials. Nature Photon 3, 157–162 (2009). https://doi.org/10.1038/nphoton.2009.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing