Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbon nanotube superconducting quantum interference device

Abstract

A superconducting quantum interference device (SQUID) with single-walled carbon nanotube (CNT) Josephson junctions is presented. Quantum confinement in each junction induces a discrete quantum dot (QD) energy level structure, which can be controlled with two lateral electrostatic gates. In addition, a backgate electrode can vary the transparency of the QD barriers, thus permitting change in the hybridization of the QD states with the superconducting contacts. The gates are also used to directly tune the quantum phase interference of the Cooper pairs circulating in the SQUID ring. Optimal modulation of the switching current with magnetic flux is achieved when both QD junctions are in the ‘on’ or ‘off’ state. In particular, the SQUID design establishes that these CNT Josephson junctions can be used as gate-controlled π-junctions; that is, the sign of the current–phase relation across the CNT junctions can be tuned with a gate voltage. The CNT-SQUIDs are sensitive local magnetometers, which are very promising for the study of magnetization reversal of an individual magnetic particle or molecule placed on one of the two CNT Josephson junctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device and operation scheme.
Figure 2: Correlation between Kondo effect and superconductivity.
Figure 3: Correlation between normal-state conductance and superconducting switching current.
Figure 4: CNT-SQUID characteristics.
Figure 5: Gate-controlled π-junction CNT-SQUID characteristics.
Figure 6: Schematics of single-molecule studies using CNT-SQUIDs.

Similar content being viewed by others

References

  1. Clarke, J., Cleland, A. N., Devoret, M. H., Esteve, D. & Martinis, J. M. Quantum mechanics of a macroscopic variable: the phase difference of a Josephson junction. Science 239, 992–997 (1988).

    Article  Google Scholar 

  2. Clarke, J. & Braginski, A. I. (eds) The SQUID Handbook (Wiley-VCH, Weinheim, 2004).

    Book  Google Scholar 

  3. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article  Google Scholar 

  4. Jaklevic, R. C., Lambe, J., Silver, A. H. & Mercereau, J. E. Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159–160 (1964).

    Article  Google Scholar 

  5. Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).

    Article  Google Scholar 

  6. Wernsdorfer, W. et al. Macroscopic quantum tunneling of magnetization of single ferrimagnetic nanoparticles of barium ferrite. Phys. Rev. Lett. 79, 4014–4017 (1997).

    Article  Google Scholar 

  7. Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999).

    Article  Google Scholar 

  8. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

    Article  Google Scholar 

  9. Nygard, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).

    Article  Google Scholar 

  10. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  Google Scholar 

  11. Liang, W., Bockrath, M. & Park, H. Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002).

    Article  Google Scholar 

  12. Kasumov, A. Y. et al. Supercurrents through single-walled carbon nanotubes. Science 397, 598–601 (1999).

    Google Scholar 

  13. Jarillo-Herrero, P., van Dam, J. A. & Kouwenhoven, L. P. Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953–956 (2006).

    Article  Google Scholar 

  14. Jørgensen, H. I., Grove-Rasmussen, K., Novotn, T., Flensberg, K. & Lindelof, P. E. Electron transport in single-wall carbon nanotube weak links in the Fabry-Perot regime. Phys. Rev. Lett. 96, 207003 (2006).

    Article  Google Scholar 

  15. Joyez, P. The Single Cooper Pair Transistor: A Macroscopic Quantum Device. Thesis, Univ. Paris 6 (1995); available at http://www.drecam/cea.fr

    Google Scholar 

  16. Glazman, L. I. & Matveev, K. A. Resonant Josephson current through Kondo impurities in a tunnel barrier. JETP Lett. 49, 659–662 (1989).

    Google Scholar 

  17. Levy Yeyati, A., Cuevas, J. C., Lopez-Davalos, A. & Martin-Rodero, A. Resonant tunneling through a small quantum dot coupled to superconducting leads. Phys. Rev. B 55, 6137–6140 (1997).

    Article  Google Scholar 

  18. Rozhkov, A. V., Arovas, D. P. & Guinea, F. Josephson coupling through a quantum dot. Phys. Rev. B 64, 233301 (2001).

    Article  Google Scholar 

  19. Zaikin, A. D. Some novel effects in superconducting nanojunctions. Low Temp. Phys. 30, 568–578 (2004).

    Article  Google Scholar 

  20. Siano, F. & Egger, R. Josephson current through a nanoscale magnetic quantum dot. Phys. Rev. Lett. 93, 047002 (2004).

    Article  Google Scholar 

  21. Choi, M. S., Lee, M., Kang, K. & Belzig, W. Kondo effect and Josephson current through a quantum dot between two superconductors. Phys. Rev. B 70, 020502 (2004).

    Article  Google Scholar 

  22. Kouwenhoven, L. & Glazman, L. Revival of the Kondo effect. Phys. World 14, 33–38 (January 2001).

    Article  Google Scholar 

  23. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    Article  Google Scholar 

  24. Buitelaar, M. R., Nussbaumer, T. & Schonenberger, C. Quantum dot in the Kondo regime coupled to superconductors. Phys. Rev. Lett. 89, 256801 (2002).

    Article  Google Scholar 

  25. Buitelaar, M. R. et al. Multiple Andreev reflections in a carbon nanotube quantum dot. Phys. Rev. Lett. 91, 057005 (2003).

    Article  Google Scholar 

  26. Cobden, D. H. & Nygard, J. Shell filling in closed single-wall carbon nanotube quantum dots. Phys. Rev. Lett. 89, 046803 (2002).

    Article  Google Scholar 

  27. Ke, S.-H., Baranger, H. U. & Yang, W. Addition energies of fullerenes and carbon nanotubes as quantum dots: the role of symmetry. Phys. Rev. Lett. 91, 116803 (2003).

    Article  Google Scholar 

  28. Beenakker, C. W. J. & van Houten, H. Single-electron Tunneling and Mesoscopic Devices (eds Koch, H. & Lübbig, H. ) 175–179 (Springer, Berlin, 1992); ibid. <http://xxx.lanl.gov/abs/cond-mat/0111505l> (2001).

  29. Joyez, P., Lafarge, P., Filipe, A., Esteve, D. & Devoret, M. H. Observation of parity-induced suppression of Josephson tunneling in the superconducting single-electron transistor. Phys. Rev. Lett. 72, 2458–2461 (1994).

    Article  Google Scholar 

  30. Vion, D., Götz, M., Joyez, P., Esteve, D. & Devoret, M. H. Thermal activation above a dissipation barrier: switching of a small Josephson junction. Phys. Rev. Lett. 77, 3435–3438 (1996).

    Article  Google Scholar 

  31. Schulz, R. R. et al. Design and realization of an all d-wave dc π-superconducting quantum interference device. Appl. Phys. Lett. 76, 912–914 (2000).

    Article  Google Scholar 

  32. Kontos, T. et al. Josephson junction through a thin ferromagnetic layer: negative coupling. Phys. Rev. Lett. 89, 137007 (2002).

    Article  Google Scholar 

  33. Guichard, W. et al. Phase sensitive experiments in ferromagnetic-based Josephson junctions. Phys. Rev. Lett. 90, 167001 (2003).

    Article  Google Scholar 

  34. Baselmans, J. J. A., van Wees, B. J. & Klapwijk, T. M. Controllable π-SQUID. Appl. Phys. Lett. 79, 2940–2942 (2001).

    Article  Google Scholar 

  35. Baselmans, J. J. A., Morpurgo, A. F., van Wees, B. J. & Klapwijk, T. M. Reversing the direction of the supercurrent in a controllable Josephson junction. Nature 397, 43–45 (1999).

    Article  Google Scholar 

  36. Ioffe, L. B., Geshkenbein, V. B., Feigel'man, M. V., Fauchere, A. L. & Blatter, G. Environmentally decoupled sds-wave Josephson junctions for quantum computing. Nature 398, 679–681 (1999).

    Article  Google Scholar 

  37. Yamashita, T., Tanikawa, K., Takahashi, S. & Maekawa, S. Superconducting qubit with a ferromagnetic Josephson junction. Phys. Rev. Lett. 95, 097001 (2005).

    Article  Google Scholar 

  38. Besteman, K., Lee, J. O., Wiertz, F. G. M., Heering, H. A. & Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003).

    Article  Google Scholar 

  39. Ketchen, M. B. & Kirtley, J. R. Design and performance aspects of pickup loop structures for miniature SQUID magnetometry. IEEE Appl. Supercond. 5, 2133–2136 (1995).

    Article  Google Scholar 

  40. Mück, M., Welzel, C. & Clarke, J. Superconducting quantum interference device amplifiers at gigahertz frequencies. Appl. Phys. Lett. 82, 3266–3268 (2003).

    Article  Google Scholar 

  41. Wernsdorfer, W. Classical and quantum magnetization reversal studies in nanometer-sized particles and clusters. Adv. Chem. Phys. 188, 99–190 (2001).

    Google Scholar 

  42. Jamet, M. et al. Magnetic anisotropy of a single cobalt nanocluster. Phys. Rev. Lett. 86, 4676–4679 (2001).

    Article  Google Scholar 

  43. Siddiqi, I. et al. RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett. 93, 207002 (2004).

    Article  Google Scholar 

  44. Siddiqi, I. et al. Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction. Phys. Rev. Lett. 94, 027005 (2005).

    Article  Google Scholar 

  45. Recher, P. & Loss, D. Superconductor coupled to two Luttinger liquids as an entangler for electron spins. Phys. Rev. B 65, 165327 (2002).

    Article  Google Scholar 

  46. Bena, C., Vishveshwara, S., Balents, L. & Fisher, M. P. A. Quantum entanglement in carbon nanotubes. Phys. Rev. Lett. 89, 037901 (2002).

    Article  Google Scholar 

  47. Bouchiat, V. et al. Single-walled carbon nanotube–superconductor entangler: noise correlations and Einstein–Podolsky–Rosen states. Nanotechnology 14, 77–85 (2003).

    Article  Google Scholar 

  48. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–485 (1996).

    Article  Google Scholar 

  49. Gerdes, S., Ondarcuhu, T., Cholet, S. & Joachim, C. Combing a carbon nanotube on a flat metal–insulator–metal nanojunction. Europhys. Lett. 48, 292–298 (1999).

    Article  Google Scholar 

  50. Javey, A., Guo, J.,Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the TEAM group of LAAS (Toulouse) for their help in clean room processes, and acknowledge our participation in the International GDR #2756 CNRS “Science and Applications of Nanotubes”. We thank F. Balestro, B. Barbara, H. Bouchiat, E. Eyraud, I. Siddiqi and C. Thirion for important contributions and discussions. This work was supported by the EC-TMR Network QuEMolNa (MRTN-CT-2003-504880), the NoE Network MAGMANet, CNRS, and Rhône-Alpes funding.

Author information

Authors and Affiliations

Authors

Contributions

J.-P.C. fabricated the devices, and W.W. conceived and performed the experiments with help from J.-P.C. and V.B. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to W. Wernsdorfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S6 (PDF 949 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleuziou, JP., Wernsdorfer, W., Bouchiat, V. et al. Carbon nanotube superconducting quantum interference device. Nature Nanotech 1, 53–59 (2006). https://doi.org/10.1038/nnano.2006.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing