Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomically thin p–n junctions with van der Waals heterointerfaces

Abstract

Semiconductor p–n junctions are essential building blocks for electronic and optoelectronic devices1,2. In conventional p–n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent of this depletion region. With the advent of atomically thin van der Waals materials and their heterostructures, it is now possible to realize a p–n junction at the ultimate thickness limit3,4,5,6,7,8,9,10. Van der Waals junctions composed of p- and n-type semiconductors—each just one unit cell thick—are predicted to exhibit completely different charge transport characteristics than bulk heterojunctions10,11,12. Here, we report the characterization of the electronic and optoelectronic properties of atomically thin p–n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides. We observe gate-tunable diode-like current rectification and a photovoltaic response across the p–n interface. We find that the tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes. Sandwiching an atomic p–n junction between graphene layers enhances the collection of the photoexcited carriers. The atomically scaled van der Waals p–n heterostructures presented here constitute the ultimate functional unit for nanoscale electronic and optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Charge transport in an atomically thin p–n heterojunction.
Figure 2: Gate-tunable photovoltaic response.
Figure 3: Graphene-sandwiched van der Waals p–n heterojunctions.

Similar content being viewed by others

References

  1. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (Wiley, 2006).

    Book  Google Scholar 

  2. Green, M. A. Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).

    Google Scholar 

  3. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  4. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  5. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  6. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  7. Bonaccorso, F. et al. Production and processing of graphene and 2D crystals. Mater. Today 15, 564–589 (December, 2012).

    Article  CAS  Google Scholar 

  8. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  CAS  Google Scholar 

  9. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  10. Bernardi, M., Palummo, M. & Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013).

    Article  CAS  Google Scholar 

  11. Gregg, B. A. & Hanna, M. C. Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J. Appl. Phys. 93, 3605–3614 (2003).

    Article  CAS  Google Scholar 

  12. Dimitrijev, S. Principle of Semiconductor Devices (Oxford Univ. Press, 2012).

    Google Scholar 

  13. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  CAS  Google Scholar 

  14. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature Mater. 11, 764–767 (2012).

    Article  CAS  Google Scholar 

  15. Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. & Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  16. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  Google Scholar 

  17. Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013).

    Article  CAS  Google Scholar 

  18. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

    Article  CAS  Google Scholar 

  19. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 497–501 (2013).

    Article  CAS  Google Scholar 

  20. Sundaram, R. S. et al. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013).

    Article  CAS  Google Scholar 

  21. Kang, J., Tongay, S., Zhou, J., Li, J. B. & Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).

    Article  Google Scholar 

  22. Fontana, M. et al. Electron–hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep. 3, 1634 (2013).

    Article  Google Scholar 

  23. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013).

    Article  CAS  Google Scholar 

  24. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262–267 (2014).

    Article  CAS  Google Scholar 

  25. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotech. 9, 257–261 (2014).

    Article  CAS  Google Scholar 

  26. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. 9, 268–272 (2014).

    Article  CAS  Google Scholar 

  27. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

    Article  CAS  Google Scholar 

  28. Greenham, N. C. & Bobbert, P. A. Two-dimensional electron–hole capture in a disordered hopping system. Phys. Rev. B 68, 245301 (2003).

    Article  Google Scholar 

  29. Sercombe, D. et al. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 3, 3489 (2013).

    Article  CAS  Google Scholar 

  30. Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  CAS  Google Scholar 

  31. Buscema, M. et al. Large and tunable photothermoelectric effect in single-layer MoS2 . Nano Lett. 13, 358–363 (2013).

    Article  CAS  Google Scholar 

  32. Shi, H. Y. et al. Exciton dynamics in suspended mono layer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013).

    Article  CAS  Google Scholar 

  33. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012).

    Article  Google Scholar 

  34. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Center for Re-defining Photovoltaic Efficiency Through Molecule Scale Control, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0001085), and in part by the National Science Foundation (DMR-1124894) and by the FAME Center, one of six centres of STARnet, a Semiconductor Research Corporation programme sponsored by MARCO and DARPA. G.H.L. and M.H. acknowledge support from the Basic Science Research Program (2014R1A1A1004632) (G.H.L.) and the Nano Material Technology Development Program (2012M3A7B4049966) (M.H.) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning.

Author information

Authors and Affiliations

Authors

Contributions

C-H.L., G-H.L., M.H., X.C. and G.A. fabricated and characterized the van der Waals p–n heterostructures. C-H.L. and G-H.L. performed device fabrication and transport measurements. A.M.v.d.Z. and C-H.L. performed photocurrent measurements. W.C. and J.G. provided theoretical support. Y.L. performed optical characterization. P.K., J.H., T.F.H., J.G. and C.N. advised on experiments. C-H.L. and P.K. wrote the manuscript in consultation with G-H.L., A.M.v.d.Z., W.C., C.N., T.F.H., J.G. and J.H.

Corresponding author

Correspondence to Philip Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CH., Lee, GH., van der Zande, A. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech 9, 676–681 (2014). https://doi.org/10.1038/nnano.2014.150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing