Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing ultrafast spin dynamics with optical pump–probe scanning tunnelling microscopy

Abstract

Studies of spin dynamics in low-dimensional systems are important from both fundamental and practical points of view1,2. Spin-polarized scanning tunnelling microscopy allows localized spin dynamics to be characterized and plays important roles in nanoscale science and technology3,4,5. However, nanoscale analysis of the ultrafast dynamics of itinerant magnetism, as well as its localized characteristics, should be pursued to advance further the investigation of quantum dynamics in functional structures of small systems. Here, we demonstrate the optical pump–probe scanning tunnelling microscopy technique, which enables the nanoscale probing of spin dynamics with the temporal resolution corresponding, in principle, to the optical pulse width. Spins are optically oriented using circularly polarized light, and their dynamics are probed by scanning tunnelling microscopy based on the optical pump–probe method. Spin relaxation in a single quantum well with a width of 6 nm was observed with a spatial resolution of 1 nm. In addition to spin relaxation dynamics, spin precession, which provides an estimation of the Landé g factor, was observed successfully.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OPP-STM used for spin detection.
Figure 2: OPP and OPP-STM measurements.
Figure 3: Temperature dependence of spin dynamics in GaAs.
Figure 4: OPP-STM measurement on quantum wells.
Figure 5: Spin precession measurement by OPP-STM.

Similar content being viewed by others

References

  1. Zutic, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and application. Rev. Mod. Phys. 76, 323–410 (2004).

    CAS  Google Scholar 

  2. Dyakonov, M. I. Spin Physics in Semiconductors (Springer Series in Solid-State Sciences 157, Springer, 2008).

    Book  Google Scholar 

  3. Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009).

    Article  CAS  Google Scholar 

  4. Loth, S., Etzkorn, M., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Measurement of fast electron spin relaxation times with atomic resolution, A. J. Science 329, 1628–1630 (2010).

    Article  CAS  Google Scholar 

  5. Khajetoorians, A. et al. Current-driven spin dynamics of artificially constructed quantum magnet. Science 339, 55–59 (2013).

    Article  CAS  Google Scholar 

  6. Kemiktarak, U., Ndukum, T., Schwab, K. C. & Ekinci, K. L. Radio-frequency scanning tunnelling microscopy. Nature 450, 85–89 (2007).

    Article  CAS  Google Scholar 

  7. Mamin, H. J., Birk, H., Wimmer, P. & Rugar, D. High speed scanning tunneling microscopy: principles and applications, J. Appl. Phys. 75, 161–168 (1994).

    Article  CAS  Google Scholar 

  8. Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010).

    Article  CAS  Google Scholar 

  9. Terada, Y, Yoshida, S., Takeuchi, O. & Shigekawa, H. Laser-combined scanning tunneling microscopy for probing ultrafast transient dynamics. J. Phys. Condens. Matter. 32, 264008–264015 (2010).

    Article  Google Scholar 

  10. Hamers, R. J. & Cahill, D. G. Ultrafast time resolution in scanned probe microscopies. Appl. Phys. Lett. 57, 2031–2033 (1990).

    Article  CAS  Google Scholar 

  11. Grafström, S. Photoassisted scanning tunneling microscopy. J. Appl. Phys. 91, 1717–1753 (2002).

    Article  Google Scholar 

  12. Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nature Photon. 7, 620–625 (2013).

    Article  CAS  Google Scholar 

  13. Terada, Y., Yoshida, S., Takeuchi, O & Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy. Nature Photon. 4, 869–974 (2010).

    Article  CAS  Google Scholar 

  14. Yokota, M. et al. Bases for time-resolved probing of transient carrier dynamics by optical pump–probe scanning tunneling microscopy. Nanoscale 5, 9170–9175 (2013).

    Article  CAS  Google Scholar 

  15. Yoshida, S. et al. Single-atomic-level probe of transient carrier dynamics by laser-combined scanning tunneling microscopy Appl. Phys. Express 6, 032401 (2013).

    Article  Google Scholar 

  16. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  Google Scholar 

  17. Tackeuchi, A., Muto, S., Inata, T . & Fujii, T. Direct observation of picosecond spin relaxation of excitons in GaAs/AIGaAs quantum wells using spin-dependent optical nonlinearity. Appl. Phys. Lett. 56, 2213–2215 (1990).

    Article  CAS  Google Scholar 

  18. Hohenester, U. et al. Subpicosecond thermalization and relaxation of highly photoexcited electrons and holes in intrinsic and p-type GaAs and InP. Phys. Rev. B 47, 13233–13245 (1993).

    Article  CAS  Google Scholar 

  19. Kimel, A. V. et al. Room-temperature ultrafast carrier and spin dynamics in GaAs probed by the photoinduced magneto-optical Kerr effect. Phys. Rev. B 63, 235201–235208 (2001).

    Article  Google Scholar 

  20. Bungay, A. R., Popov, S. V., Shatwell, I. R. & Zheludev, N. I. Direct measurement of carrier spin relaxation times in opaque solids using the specular inverse Faraday effect. Phys. Lett. A 234, 379–383 (1997).

    Article  CAS  Google Scholar 

  21. Zerrouati, K., Fabre, F., Bacquet, G., Bandet, J. & Frandon, J. Spin-lattice relaxation in p-type gallium arsenide single crystals. Phys. Rev. B 37, 1334–1341 (1988).

    Article  CAS  Google Scholar 

  22. Tackeuchi, A., Kuroda, T., Muto, S. & Wada, O. Picosecond electron-spin relaxation in GaAs/AlGaAs quantum wells and InGaAs/InP quantum wells. Physica B 272, 318–323 (1999).

    Article  CAS  Google Scholar 

  23. Lai, T. et al. Evolution of spin coherence dynamics and g factor with electron excess energy in bulk intrinsic GaAs. Appl. Phys. Lett. 91, 062110 (2007).

    Article  Google Scholar 

  24. Kikkawa, J. M. & Awschalom, D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998).

    Article  CAS  Google Scholar 

  25. Schreiber, L., Heidkamp, M., Rohleder, T., Beschoten, B. & Güntherodt, G. Mapping of spin lifetimes to electronic states in n-type GaAs near the metal–insulator transition. Preprint at http://arxiv.org/:0706.1884 (2007).

  26. Dzhioev, R. I. et al. Low-temperature spin relaxation in n-type GaAs. Phys. Rev. B 66, 245204 (2002).

    Article  Google Scholar 

  27. Oestreich, M. et al. Temperature and density dependence of the electron Landé g factor in semiconductors. Phys. Rev. B 53, 7911–7916 (1996).

    Article  CAS  Google Scholar 

  28. Yugova, I. A., Glazov, M. M., Yakovley, D. R., Sokolova, A. A. & Bayer, M. Coherent spin dynamics of electrons and holes in semiconductor quantum wells and quantum dots under periodical optical excitation: resonant spin amplification versus spin mode locking. Phys. Rev. B 85, 125304 (2012).

    Article  Google Scholar 

  29. Davies, J. H. The Physics of Low-dimensional Semiconductors: An Introduction (Cambridge Univ. Press, 2006).

    Google Scholar 

Download references

Acknowledgements

Support from Japan Society for the Promotion of Science (Grants-in-Aid for Scientific Research, 22226003) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.Y. performed the experiment and data analysis (with H.S.). Y.A., Z.W. and Y.M. assisted with the measurement. R.O. and H.O. worked on sample preparation. E.M. helped to design the TESLA system. O.T. provided technical advice and helped to design the TESLA system. H.S. organized and supervised the project and edited the paper.

Corresponding author

Correspondence to Hidemi Shigekawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, S., Aizawa, Y., Wang, Zh. et al. Probing ultrafast spin dynamics with optical pump–probe scanning tunnelling microscopy. Nature Nanotech 9, 588–593 (2014). https://doi.org/10.1038/nnano.2014.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing