Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight

This article has been updated

Abstract

Dysfunctional endothelium contributes to more diseases than any other tissue in the body. Small interfering RNAs (siRNAs) can help in the study and treatment of endothelial cells in vivo by durably silencing multiple genes simultaneously, but efficient siRNA delivery has so far remained challenging. Here, we show that polymeric nanoparticles made of low-molecular-weight polyamines and lipids can deliver siRNA to endothelial cells with high efficiency, thereby facilitating the simultaneous silencing of multiple endothelial genes in vivo. Unlike lipid or lipid-like nanoparticles, this formulation does not significantly reduce gene expression in hepatocytes or immune cells even at the dosage necessary for endothelial gene silencing. These nanoparticles mediate the most durable non-liver silencing reported so far and facilitate the delivery of siRNAs that modify endothelial function in mouse models of vascular permeability, emphysema, primary tumour growth and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 7C1 synthesis, characterization and in vivo biodistribution.
Figure 2: 7C1 delivers siRNA to endothelial cells.
Figure 3: 7C1 preferentially delivers siRNA to pulmonary endothelial cells in vivo.
Figure 4: 7C1-mediated mRNA silencing modifies endothelial function in vivo.

Similar content being viewed by others

Change history

  • 20 June 2014

    In the version of this Article originally published online, the following authors' names were written incorrectly: Victor Koteliansky, Omar F. Khan and Kamaljeet Singh Sandhu. These have now been corrected in all versions of the Article.

References

  1. Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nature Rev. Immunol. 7, 803–815 (2007).

    Article  CAS  Google Scholar 

  2. Hagberg, C. E. et al. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature 490, 426–430 (2012).

    Article  CAS  Google Scholar 

  3. Kumar, V., Abbas, A., Fausto, N. & Aster, J. Robbins and Cotran Pathologic Basis of Disease 8th edn (Elsevier, 2009).

  4. Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nature Mater. 12, 967–977 (2013).

    Article  CAS  Google Scholar 

  5. Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article  CAS  Google Scholar 

  6. Semple, S. et al. Rational design of cationic lipids for siRNA delivery. Nature Biotechnol. 28, 172–176 (2010).

    Article  CAS  Google Scholar 

  7. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nature Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  Google Scholar 

  8. Aleku, M. et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 68, 9788–9798 (2008).

    Article  CAS  Google Scholar 

  9. Aleku, M. et al. Intracellular localization of lipoplexed siRNA in vascular endothelial cells of different mouse tissues. Microvasc. Res. 76, 31–41 (2008).

    Article  CAS  Google Scholar 

  10. Santel, A. et al. RNA interference in the mouse vascular endothelium by systemic administration of siRNA-lipoplexes for cancer therapy. Gene Ther. 13, 1360–1370 (2006).

    Article  CAS  Google Scholar 

  11. Santel, A. et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther. 13, 1222–1234 (2006).

    Article  CAS  Google Scholar 

  12. Polach, K. J. et al. Delivery of siRNA to the mouse lung via a functionalized lipopolyamine. Mol. Ther. 20, 91–100 (2012).

    Article  CAS  Google Scholar 

  13. Kaufmann, J., Ahrens, K. & Santel, A. RNA interference for therapy in the vascular endothelium. Microvasc. Res. 80, 286–293 (2010).

    Article  CAS  Google Scholar 

  14. Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 484, 1067–1070 (2010).

    Article  Google Scholar 

  15. Rozema, D. B. et al. Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl Acad. Sci. USA 104, 12982–12987 (2007).

    Article  CAS  Google Scholar 

  16. Godbey, W. T., Wu, K. K. & Mikos, A. G. Poly(ethylenimine) and its role in gene delivery. J. Control. Rel. 60, 149–160 (1999).

    Article  CAS  Google Scholar 

  17. Breunig, M., Lungwitz, U., Liebl, R. & Goepferich, A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl Acad. Sci. USA 104, 14454–14459 (2007).

    Article  CAS  Google Scholar 

  18. Richards Grayson, A. C., Doody, A. M. & Putnam, D. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res. 8, 1868–1876 (2006).

    Article  Google Scholar 

  19. Crawford, R. et al. Analysis of lipid nanoparticles by cryo-EM for characterizing siRNA delivery vehicles. Int. J. Pharm. 403, 237–244 (2011).

    Article  CAS  Google Scholar 

  20. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).

    Article  CAS  Google Scholar 

  21. Huang, H., Bhat, A., Woodnutt, G. & Lappe, R. Targeting the ANGPT-TIE2 pathway in malignancy. Nature Rev. Cancer 10, 575–585 (2010).

    Article  CAS  Google Scholar 

  22. Novobrantseva, T. I. et al. Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol. Ther. Nucleic Acids 1, e4 (2012).

    Article  Google Scholar 

  23. Kasahara, Y. et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Invest. 106, 1311–1319 (2000).

    Article  CAS  Google Scholar 

  24. Tuder, R. M. & Yun, J. H. Vascular endothelial growth factor of the lung: friend or foe. Curr. Opin. Pharmacol. 8, 255–260 (2008).

    Article  CAS  Google Scholar 

  25. Thurston, G., Noguera-Troise, I. & Yancopoulos, G. D. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nature Rev. Cancer 7, 327–331 (2007).

    Article  CAS  Google Scholar 

  26. Fischer, C., Mazzone, M., Jonckx, B. & Carmeliet, P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nature Rev. Cancer 8, 942–956 (2008).

    Article  CAS  Google Scholar 

  27. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).

    Article  CAS  Google Scholar 

  28. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  Google Scholar 

  29. Tammela, T. et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nature Cell Biol. 13, 1202–1213 (2011).

    Article  CAS  Google Scholar 

  30. Stevens, J. B. et al. Heterogeneity of cell death. Cytogenet. Genome Res. 139, 164–173 (2013).

    Article  CAS  Google Scholar 

  31. Kuramoto, T. et al. Dll4-Fc, an inhibitor of Dll4-notch signaling, suppresses liver metastasis of small cell lung cancer cells through the downregulation of the NF-kappaB activity. Mol. Cancer Ther. 11, 2578–2587 (2012).

    Article  CAS  Google Scholar 

  32. Garcia, A. & Kandel, J. J. Notch: a key regulator of tumor angiogenesis and metastasis. Histol. Histopathol. 27, 151–156 (2012).

    Google Scholar 

  33. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article  CAS  Google Scholar 

  34. Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotech. 7, 779–786 (2012).

    Article  CAS  Google Scholar 

  35. Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  CAS  Google Scholar 

  36. Whitehead, K., Dahlman, J. E., Langer, R. S. & Anderson, D. G. Silencing or stimulation? siRNA delivery and the immune system. Ann. Rev. Chem. Biomol. Eng. 2, 77–96 (2011).

    Article  CAS  Google Scholar 

  37. Panigrahy, D. et al. Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. J. Clin. Invest. 122, 178–191 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Cattie, T. O'Shea and T. Tammela. J.E.D. was supported by National Defense Science and Engineering (NDSEG), the National Science Foundation (NSF) and MIT Presidential Fellowships. D.P. was supported by R01 CA148663. M.W.K. was supported by the Stop and Shop Pediatric Brain Tumour Fund, as well as the Pediatric Brain Tumour Fund. H.S. was supported by the Deutsche Forschungsgemeinschaft (SA1668/2-1). Research was also supported by Alnylam and the Center for RNA Therapeutics and Biology.

Author information

Authors and Affiliations

Authors

Contributions

J.E.D., C.B., V.K., R.L. and D.G.A. conceived the experiments. J.E.D., C.B., O.F.K., A.T., S.J., T.E.S., Y.X., H.B.S., G.S., L.S., A.B., R.L.B., H.Y., T.R., Y.D., S.J., D.S., A.D., K.S.S., M.J.W., T.N., V.M.R., A.K.R.L.J., C.G.L., B.K., D.K.M., M.P., L.A., P.D., L.S., K.C., M.W.K., K.F., M.N., D.D., R.M.T., U.H.V.A., A.A., A.S. and D.P. performed experiments. J.E.D., C.B., V.K., R.L. and D.G.A. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Daniel G. Anderson.

Ethics declarations

Competing interests

R.L. is a shareholder and member of the Scientific Advisory Board of Alnylam. R.L and D.G.A have sponsored research grants from Alnylam. Alnylam also has a licence to certain intellectual property that was invented at the Massachusetts Institute of Technology by D.G.A. and R.L.

Supplementary information

Supplementary information

Supplementary Information (PDF 2132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahlman, J., Barnes, C., Khan, O. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nature Nanotech 9, 648–655 (2014). https://doi.org/10.1038/nnano.2014.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.84

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research