Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Explosives detection in a lasing plasmon nanocavity

Abstract

Perhaps the most successful application of plasmonics to date has been in sensing, where the interaction of a nanoscale localized field with analytes leads to high-sensitivity detection in real time and in a label-free fashion1,2,3,4,5,6,7,8,9. However, all previous designs have been based on passively excited surface plasmons, in which sensitivity is intrinsically limited by the low quality factors induced by metal losses. It has recently been proposed theoretically that surface plasmon sensors with active excitation (gain-enhanced) can achieve much higher sensitivities due to the amplification of the surface plasmons10,11,12. Here, we experimentally demonstrate an active plasmon sensor that is free of metal losses and operating deep below the diffraction limit for visible light. Loss compensation leads to an intense and sharp lasing emission that is ultrasensitive to adsorbed molecules. We validated the efficacy of our sensor to detect explosives in air under normal conditions and have achieved a sub-part-per-billion detection limit, the lowest reported to date for plasmonic sensors7,13,14,15,16,17,18 with 2,4-dinitrotoluene and ammonium nitrate. The selectivity between 2,4-dinitrotoluene, ammonium nitrate and nitrobenzene is on a par with other state-of-the-art explosives detectors19,20. Our results show that monitoring the change of the lasing intensity is a superior method than monitoring the wavelength shift, as is widely used in passive surface plasmon sensors. We therefore envisage that nanoscopic sensors that make use of plasmonic lasing could become an important tool in security screening and biomolecular diagnostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic, SEM image, simulated field distribution and transmission electron microscope (TEM) image of an active plasmon nanosensor.
Figure 2: Characterization of the active plasmon sensor.
Figure 3: Time-resolved emission of the sensor measured at the spontaneous emission region to investigate dynamic processes of the photon-excited carrier relaxation.
Figure 4: Detection of 2,4-dinitrotoluene, ammonium nitrate and nitrobenzene in air.
Figure 5: Detection of explosive molecules via spontaneous emission.

Similar content being viewed by others

References

  1. Peng, G. et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nature Nanotech. 4, 669–673 (2009).

    Article  CAS  Google Scholar 

  2. Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Mater. 10, 631–636 (2011).

    Article  CAS  Google Scholar 

  3. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  4. Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nature Mater. 8, 867–871 (2009).

    Article  CAS  Google Scholar 

  5. Cubukcu, E., Zhang, S., Park, Y-S., Bartal, G. & Zhang, X. Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 (2009).

    Article  Google Scholar 

  6. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Article  CAS  Google Scholar 

  7. Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).

    Article  CAS  Google Scholar 

  8. Yanika, A. A. et al. Seeing protein monolayers with the naked eye through plasmonic Fano resonances. Proc. Natl Acad. Sci. USA 108, 11784–11789 (2011).

    Article  Google Scholar 

  9. Brolo, A. G. Plasmonics for future biosensors. Nature Photon. 6, 709–713 (2012).

    Article  CAS  Google Scholar 

  10. Lawandy, N. M. Localized surface plasmon singularities in amplifying media. Appl. Phys. Lett. 85, 5040–5042 (2004).

    Article  CAS  Google Scholar 

  11. Gordon, J. A. & Ziolkowski, R. W. Investigating functionalized active coated nanoparticles for use in nano-sensing applications. Opt. Express 15, 12562–12582 (2007).

    Article  CAS  Google Scholar 

  12. Li, Z-Y. & Xia, Y. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett. 10, 243–249 (2010).

    Article  Google Scholar 

  13. Piorek, B. D., Lee, S. J., Moskovits, M. & Meinhart, C. D. Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives. Anal. Chem. 84, 9700–9705 (2012).

    Article  CAS  Google Scholar 

  14. Sylvia, J. M., Janni, J. A., Klein, J. D. & Spencer, K. M. Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal. Chem. 72, 5834–5840 (2000).

    Article  CAS  Google Scholar 

  15. Khaing Oo, M. K., Chang, C-F., Sun, Y. & Fan, X. Rapid, sensitive DNT vapor detection with UV-assisted photo-chemically synthesized gold nanoparticle SERS substrates. Analyst 136, 2811–2817 (2011).

    Article  Google Scholar 

  16. Bowen, J. et al. Gas-phase detection of trinitrotoluene utilizing a solid-phase antibody immobilized on a gold film by means of surface plasmon resonance spectroscopy. Appl. Spectrosc. 57, 906–914 (2003).

    Article  CAS  Google Scholar 

  17. Baker, G. A. & Moore, D. S. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal. Bioanal. Chem. 382, 1751–1770 (2005).

    Article  CAS  Google Scholar 

  18. Tamane, S., Topal, C. & Kalkan, A. J. Vapor phase SERS sensor for explosives detection. Proceedings of the 11th IEEE International Conference on Nanotechnology 301–306 (2011).

  19. Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M. & Bulovic, V. Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876–879 (2005).

    Article  CAS  Google Scholar 

  20. Rochat, S. & Swager, T. M. Conjugated amplifying polymers for optical sensing applications. ACS Appl. Mater. Interfaces 5, 4488–4502 (2013).

    Article  CAS  Google Scholar 

  21. He, L., Ozdemir, S. K., Zhu, J., Kim, W. & Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nature Nanotech. 6, 428–432 (2011).

    Article  CAS  Google Scholar 

  22. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  CAS  Google Scholar 

  23. Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nature Methods 5, 591–596 (2008).

    Article  CAS  Google Scholar 

  24. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article  Google Scholar 

  25. Hill, M. T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    Article  CAS  Google Scholar 

  26. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1113 (2009).

    Article  CAS  Google Scholar 

  27. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  Google Scholar 

  28. Ma, R-M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110–113 (2011).

    Article  CAS  Google Scholar 

  29. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).

    Article  CAS  Google Scholar 

  30. Lu, Y-J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012).

    Article  CAS  Google Scholar 

  31. Ma, R-M., Yin, X. B., Oulton, R. F., Sorger, V. J. & Zhang, X. Multiplexed and electrically modulated plasmon laser circuit. Nano Lett. 12, 5396–5402 (2012).

    Article  CAS  Google Scholar 

  32. Seker, F., Meeker, K., Kuech, T. F. & Ellis, A. B. Surface chemistry of prototypical bulk IIVI and IIIV semiconductors and implications for chemical sensing. Chem. Rev. 100, 2505–2536 (2000).

    Article  CAS  Google Scholar 

  33. Skoog, D. A., Holler, F. J. & Crouch, S. R. Principles of Instrumental Analysis 6th edn (Thomson Learning, 2006).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the US Air Force Office of Scientific Research (AFOSR, grant no. FA9550-12-1-0197).

Author information

Authors and Affiliations

Authors

Contributions

R-M.M. conducted theoretical simulations. R-M.M. and S.O. performed device fabrication and optical measurements. R-M.M. and S.O. wrote the manuscript. All authors discussed the results and contributed to the manuscript revision. X.Z. guided the research.

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, RM., Ota, S., Li, Y. et al. Explosives detection in a lasing plasmon nanocavity. Nature Nanotech 9, 600–604 (2014). https://doi.org/10.1038/nnano.2014.135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing