Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution

Abstract

Optical tweezers use the momentum of photons to trap and manipulate microscopic objects, contact-free, in three dimensions. Although this technique has been widely used in biology and nanotechnology to study molecular motors, biopolymers and nanostructures, its application to study viruses has been very limited, largely due to their small size. Here, using optical tweezers that can simultaneously resolve two-photon fluorescence at the single-molecule level, we show that individual HIV-1 viruses can be optically trapped and manipulated, allowing multi-parameter analysis of single virions in culture fluid under native conditions. We show that individual HIV-1 differs in the numbers of envelope glycoproteins by more than one order of magnitude, which implies substantial heterogeneity of these virions in transmission and infection at the single-particle level. Analogous to flow cytometry for cells, this fluid-based technique may allow ultrasensitive detection, multi-parameter analysis and sorting of viruses and other nanoparticles in biological fluid with single-molecule resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical trapping of HIV virions in culture fluid.
Figure 2: Back focal plane interferometry to distinguish a single HIV-1 particle from aggregates in complete media.
Figure 3: Measurement of diameter for single HIV-1.
Figure 4: Aggregation of HIV-1 observed at high virion concentrations.
Figure 5: Optical trapping virometry.
Figure 6: Two-colour correlation analysis for EGFP–Vpr and envelope glycoproteins in single HIV-1 virions.

Similar content being viewed by others

References

  1. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  CAS  Google Scholar 

  2. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  CAS  Google Scholar 

  3. Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  CAS  Google Scholar 

  4. Marago, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nature Nanotech. 8, 807–819 (2013).

    Article  CAS  Google Scholar 

  5. Qian, B., Montiel, D., Bregulla, A., Cichos, F. & Yang, H. Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chem. Sci. 4, 1420–1429 (2013).

    Article  CAS  Google Scholar 

  6. Wang, M. D. Manipulation of single molecules in biology. Curr. Opin. Biotechnol. 10, 81–86 (1999).

    Article  CAS  Google Scholar 

  7. Perkins, T. T., Quake, S. R., Smith, D. E. & Chu, S. Relaxation of a single DNA molecule observed by optical microscopy. Science 264, 822–826 (1994).

    Article  CAS  Google Scholar 

  8. Heller, I. et al. STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nature Methods 10, 910–916 (2013).

    Article  CAS  Google Scholar 

  9. Aubin-Tam, M. E., Olivares, A. O., Sauer, R. T., Baker, T. A. & Lang, M. J. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 145, 257–267 (2011).

    Article  CAS  Google Scholar 

  10. Bormuth, V., Varga, V., Howard, J. & Schaffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870–873 (2009).

    Article  CAS  Google Scholar 

  11. Gross, S. P. Application of optical traps in vivo. Methods Enzymol. 361, 162–174 (2003).

    Article  CAS  Google Scholar 

  12. Vale, R. D. Microscopes for fluorimeters: the era of single molecule measurements. Cell 135, 779–785 (2008).

    Article  CAS  Google Scholar 

  13. Yanagida, T., Iwaki, M. & Ishii, Y. Single molecule measurements and molecular motors. Phil. Trans. R. Soc. Lond. B 363, 2123–2134 (2008).

    Article  CAS  Google Scholar 

  14. Stigler, J., Ziegler, F., Gieseke, A., Gebhardt, J. C. M. & Rief, M. The complex folding network of single calmodulin molecules. Science 334, 512–516 (2011).

    Article  CAS  Google Scholar 

  15. Tinoco, I. Jr Force as a useful variable in reactions: unfolding RNA. Annu. Rev. Biophys. Biomol. Struct. 33, 363–385 (2004).

    Article  CAS  Google Scholar 

  16. Bosanac, L., Aabo, T., Bendix, P. M. & Oddershede, L. B. Efficient optical trapping and visualization of silver nanoparticles. Nano Lett. 8, 1486–1491 (2008).

    Article  CAS  Google Scholar 

  17. Ploschner, M., Cizmar, T., Mazilu, M., Di Falco, A. & Dholakia, K. Bidirectional optical sorting of gold nanoparticles. Nano Lett. 12, 1923–1927 (2012).

    Article  CAS  Google Scholar 

  18. Tong, L., Miljkovic, V. D. & Kall, M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett. 10, 268–273 (2010).

    Article  CAS  Google Scholar 

  19. Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nature Nanotech. 8, 175–179 (2013).

    Article  CAS  Google Scholar 

  20. Reece, P. J. et al. Characterization of semiconductor nanowires using optical tweezers. Nano Lett. 11, 2375–2381 (2011).

    Article  CAS  Google Scholar 

  21. Chen, Y. F., Serey, X., Sarkar, R., Chen, P. & Erickson, D. Controlled photonic manipulation of proteins and other nanomaterials. Nano Lett. 12, 1633–1637 (2012).

    Article  Google Scholar 

  22. Pauzauskie, P. J. et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Mater. 5, 97–101 (2006).

    Article  CAS  Google Scholar 

  23. Ashkin, A. & Dziedzic, J. M. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987).

    Article  CAS  Google Scholar 

  24. Lauffer, M. A. & Stevens, C. L. Structure of the tobacco mosaic virus particle; polymerization of tobacco mosaic virus protein. Adv. Virus Res. 13, 1–63 (1968).

    Article  CAS  Google Scholar 

  25. Newman, J. & Swinney, H. L. Length and dipole moment of TMV by laser signal-averaging transient electric birefringence. Biopolymers 15, 301–315 (1976).

    Article  CAS  Google Scholar 

  26. Knipe, D. et al. Fields Virology (Lippincott, Williams & Wilkins, 2007).

    Google Scholar 

  27. Klein, J. S. & Bjorkman, P. J. Few and far between: how HIV may be evading antibody avidity. PLoS Pathogens 6, e1000908 (2010).

    Article  Google Scholar 

  28. Bendix, P. M. & Oddershede, L. B. Expanding the optical trapping range of lipid vesicles to the nanoscale. Nano Lett. 11, 5431–5437 (2011).

    Article  CAS  Google Scholar 

  29. Cheng, W., Hou, X. & Ye, F. Use of tapered amplifier diode laser for biological-friendly high-resolution optical trapping. Opt. Lett. 35, 2988–2990 (2010).

    Article  CAS  Google Scholar 

  30. Kim, J. H., Song, H., Austin, J. L. & Cheng, W. Optimized infectivity of the cell-free single-cycle human immunodeficiency viruses type 1 (HIV-1) and its restriction by host cells. PLoS ONE 8, e67170 (2013).

    Article  CAS  Google Scholar 

  31. McDonald, D. et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159, 441–452 (2002).

    Article  CAS  Google Scholar 

  32. Schaeffer, E., Geleziunas, R. & Greene, W. C. Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions. J. Virol. 75, 2993–3000 (2001).

    Article  CAS  Google Scholar 

  33. Accola, M. A., Ohagen, A. & Gottlinger, H. G. Isolation of human immunodeficiency virus type 1 cores: retention of Vpr in the absence of p6(gag). J. Virol. 74, 6198–6202 (2000).

    Article  CAS  Google Scholar 

  34. Hou, X. & Cheng, W. Single-molecule detection using continuous wave excitation of two-photon fluorescence. Opt. Lett. 36, 3185–3187 (2011).

    Article  CAS  Google Scholar 

  35. Hou, X. & Cheng, W. Detection of single fluorescent proteins inside eukaryotic cells using two-photon fluorescence. Biomed. Opt. Express 3, 340–353 (2012).

    Article  CAS  Google Scholar 

  36. Cheng, W., Arunajadai, S. G., Moffitt, J. R., Tinoco, I. Jr & Bustamante, C. Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science 333, 1746–1749 (2011).

    Article  CAS  Google Scholar 

  37. Briggs, J. A. G., Wilk, T., Welker, R., Krausslich, H. G. & Fuller, S. D. Structural organization of authentic, mature HIV-1 virions and cores. EMBO J. 22, 1707–1715 (2003).

    Article  CAS  Google Scholar 

  38. Tolic-Norrelykke, S. F. et al. Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum. 77, 103101 (2006).

    Article  Google Scholar 

  39. Burton, D. R. et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266, 1024–1027 (1994).

    Article  CAS  Google Scholar 

  40. Kwong, P. D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998).

    Article  CAS  Google Scholar 

  41. Liu, J., Bartesaghi, A., Borgnia, M. J., Sapiro, G. & Subramaniam, S. Molecular architecture of native HIV-1 gp120 trimers. Nature 455, 109–113 (2008).

    Article  CAS  Google Scholar 

  42. Chertova, E. et al. Envelope glycoprotein incorporation, not shedding of surface envelope glycoprotein (gp120/SU), is the primary determinant of SU content of purified human immunodeficiency virus type 1 and simian immunodeficiency virus. J. Virol. 76, 5315–5325 (2002).

    Article  CAS  Google Scholar 

  43. Zhu, P. et al. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441, 847–852 (2006).

    Article  CAS  Google Scholar 

  44. Gittes, F. & Schmidt, C. F. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7–9 (1998).

    Article  CAS  Google Scholar 

  45. Klasse, P. J. The molecular basis of HIV entry. Cell Microbiol. 14, 1183–1192 (2012).

    Article  CAS  Google Scholar 

  46. Parrish, N. F. et al. Phenotypic properties of transmitted founder HIV-1. Proc. Natl Acad. Sci. USA 110, 6626–6633 (2013).

    Article  CAS  Google Scholar 

  47. Berger, E. A. et al. A new classification for HIV-1. Nature 391, 240 (1998).

    Article  CAS  Google Scholar 

  48. Checkley, M. A., Luttge, B. G. & Freed, E. O. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J. Mol. Biol. 410, 582–608 (2011).

    Article  CAS  Google Scholar 

  49. Johnson, M. C. Mechanisms for Env glycoprotein acquisition by retroviruses. AIDS Res. Hum. Retrovir. 27, 239–247 (2011).

    Article  CAS  Google Scholar 

  50. Sundquist, W. I. & Krausslich, H. G. HIV-1 assembly, budding, and maturation. Cold Spring Harb. Perspect. Med. 2, a006924 (2012).

    Article  Google Scholar 

  51. Muranyi, W., Malkusch, S., Muller, B., Heilemann, M. & Krausslich, H. G. Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. PLoS Pathogens 9, e1003198 (2013).

    Article  Google Scholar 

  52. Arunajadai, S. G. & Cheng, W. Step detection in single-molecule real time trajectories embedded in correlated noise. PLoS ONE 8, e59279 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institutes of Health (NIH) Director's New Innovator Award (1DP2OD008693-01, to W.C.), a National Science Foundation CAREER Award (CHE1149670, to W.C.) and also in part by a research grant from the March of Dimes Foundation (5-FY10-490, to W.C.). The authors thank A. Ono and A. Telesnitsky for discussions and Cheng Lab members, especially M. DeSantis, for critical reading of the manuscript. The MATLAB code for analysis of transmission electron microscopy images of polystyrene beads was provided by M. DeSantis. The following reagents were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID), NIH: pNL4-3 from M. Martin; pNL4-3.Luc.R-E- from N. Landau; pEGFP–Vpr from W. C. Greene; TZM-bl cells from J. C. Kappes, X. Wu and Tranzyme Inc; b12 antibody from D. Burton and C. Barbas.

Author information

Authors and Affiliations

Authors

Contributions

W.C. conceived and directed the project. H.S. and J.H.K. prepared experimental materials. Y.P., H.S., J.H.K., X.H. and W.C. conducted the experiments. Y.P., H.S., J.H.K., X.H. and W.C. performed the analysis. Y.P. and W.C. wrote the paper.

Corresponding author

Correspondence to Wei Cheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4277 kb)

Supplementary Movie

Supplementary Movie (AVI 1583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Song, H., Kim, J. et al. Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution. Nature Nanotech 9, 624–630 (2014). https://doi.org/10.1038/nnano.2014.140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing