Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metamaterial mirrors in optoelectronic devices

Abstract

The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror (φ = π) to that of a perfect magnetic mirror (φ = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light–matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by 20% over a broad spectral band.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical properties of a metamaterial mirror.
Figure 2: Impact of metamaterial mirror on solar cell performance.
Figure 3: Structural and optical characterization of fabricated devices.
Figure 4: Quantification of device performance enhancement due to presence of a metamaterial mirror.

Similar content being viewed by others

References

  1. Enoch, J. M. History of mirrors dating back 8000 years. Optom. Vis. Sci. 83, 775–781 (2006).

    Article  Google Scholar 

  2. Schwanecke, A. S. et al. Optical magnetic mirrors. J. Opt. A Pure Appl. Opt. 9, L1–L2 (2007).

    Article  Google Scholar 

  3. Genevet, P., Kats, M. A., Blanchard, R. & Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nature Mater. 12, 20–24 (2012).

    Google Scholar 

  4. Dotan, H. et al. Resonant light trapping in ultrathin films for water splitting. Nature Mater. 12, 158–164 (2013).

    Article  CAS  Google Scholar 

  5. Sievenpiper, D., Zhang, L. Z. L., Broas, R. F. J., Alexopolous, N. G. & Yablonovitch, E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999).

    Article  Google Scholar 

  6. Kuester, E. F., Mohamed, M. A., Piket-May, M. & Holloway, C. L. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans. Antennas Propag. 51, 2641–2651 (2003).

    Article  Google Scholar 

  7. Biener, G., Niv, A., Kleiner, V. & Hasman, E. Metallic subwavelength structures for a broadband infrared absorption control. Opt. Lett. 32, 994–996 (2007).

    Article  CAS  Google Scholar 

  8. Luukkonen, O. et al. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans. Antennas Propag. 56, 1624–1632 (2008).

    Article  Google Scholar 

  9. Zhao, Y., Alù, A. & Engheta, N. Homogenization of plasmonic metasurfaces modeled as transmission-line loads. Metamaterials 5, 90–96 (2011).

    Article  Google Scholar 

  10. Moreau, A. et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86–89 (2012).

    Article  CAS  Google Scholar 

  11. Pors, A. & Bozhevolnyi, S. I. Efficient and broadband quarter-wave plates by gap-plasmon resonators. Opt. Express 21, 2942–2952 (2013).

    Article  Google Scholar 

  12. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  13. McVay, J., Engheta, N. & Hoorfar, A. High impedance metamaterial surfaces using Hilbert-curve inclusions. IEEE Microw. Wirel. Components Lett. 14, 130–132 (2004).

    Article  Google Scholar 

  14. Yang, F. Y. F. & Rahmat-Samii, Y. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Trans. Antennas Propag. 51, 2691–2703 (2003).

    Article  Google Scholar 

  15. Prosvirnin, S. L. & Zheludev, N. I. Polarization effects in the diffraction of light by a planar chiral structure. Phys. Rev. E 71, 037603 (2005).

    Article  CAS  Google Scholar 

  16. Papakostas, A. et al. Optical manifestations of planar chirality. Phys. Rev. Lett. 90, 107404 (2003).

    Article  CAS  Google Scholar 

  17. Fedotov, V. A., Mladyonov, P. L., Prosvirnin, S. L. & Zheludev, N. I. Planar electromagnetic metamaterial with a fish scale structure. Phys. Rev. E 72, 056613 (2005).

    Article  CAS  Google Scholar 

  18. Fedotov, V. A., Rogacheva, A. V., Zheludev, N. I., Mladyonov, P. L. & Prosvirnin, S. L. Mirror that does not change the phase of reflected waves. Appl. Phys. Lett. 88, 091119 (2006).

    Article  Google Scholar 

  19. Nanfang, Y. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  Google Scholar 

  20. Kildishev, A. V., Shalaev, V. M., Boltasseva, A., Emani, N. K. & Ni, X. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012).

    Article  Google Scholar 

  21. Pors, A. et al. Optical transparency by detuned electrical dipoles. New J. Phys. 13, 023034 (2011).

    Article  Google Scholar 

  22. Schuck, P. J., Zolotorev, M., Polyakov, A. & Padmore, H. A. Collective behavior of impedance matched plasmonic nanocavities. Opt. Express 20, 7685 (2012).

    Article  Google Scholar 

  23. Miyazaki, H. T. & Kurokawa, Y. How can a resonant nanogap enhance optical fields by many orders of magnitude? IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).

    Article  CAS  Google Scholar 

  24. Pardo, F., Bouchon, P., Haïdar, R. & Pelouard, J-L. Light funneling mechanism explained by magnetoelectric interference. Phys. Rev. Lett. 107, 093902 (2011).

    Article  Google Scholar 

  25. Eriksen, R. L. et al. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nature Commun. 3, 969 (2012).

    Article  Google Scholar 

  26. Shin, H., Yanik, M. F., Fan, S., Zia, R. & Brongersma, M. L. Omnidirectional resonance in a metal–dielectric–metal geometry. Appl. Phys. Lett. 84, 4421 (2004).

    Article  CAS  Google Scholar 

  27. Liu, J. S. Q. & Brongersma, M. L. Omnidirectional light emission via surface plasmon polaritons. Appl. Phys. Lett. 90, 91116 (2007).

    Article  Google Scholar 

  28. Mann, S. a. & Garnett, E. C. Extreme light absorption in thin semiconducting films wrapped around metal nanowires. Nano Lett. 13, 3173–3178 (2013).

    Article  CAS  Google Scholar 

  29. Hägglund, C. & Apell, P. Plasmonic near-field absorbers for ultrathin solar cells. J. Phys. Chem. Lett. 3, 1275–1285 (2012).

    Article  Google Scholar 

  30. Thongrattanasiri, S., Koppens, F. H. L. & García de Abajo, F. J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).

    Article  Google Scholar 

  31. Beiley, Z. M. et al. Morphology-dependent trap formation in high performance polymer bulk heterojunction solar cells. Adv. Energy Mater. 1, 954–962 (2011).

    Article  CAS  Google Scholar 

  32. Heeger, A. J. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–302 (2009).

    Article  Google Scholar 

  33. Kim, J. Y. et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006).

    Article  CAS  Google Scholar 

  34. Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    Article  CAS  Google Scholar 

  35. Roy, A. et al. Titanium suboxide as an optical spacer in polymer solar cells. Appl. Phys. Lett. 95, 13302 (2009).

    Article  Google Scholar 

  36. Gilot, J., Barbu, I., Wienk, M. M. & Janssen, R. A. J. The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study. Appl. Phys. Lett. 91, 113520 (2007).

    Article  Google Scholar 

  37. Rostami, H., Abdi, Y. & Arzi, E. Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes. Carbon 48, 3659–3666 (2010).

    Article  CAS  Google Scholar 

  38. Logeeswaran, V. J. et al. Ultrasmooth silver thin films deposited with a germanium nucleation layer. Nano Lett. 9, 178–182 (2009).

    Article  Google Scholar 

  39. Gordon, I. et al. Three novel ways of making thin-film crystalline-silicon layers on glass for solar cell applications. Sol. Energy Mater. Sol. Cells 95, S2–S7 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication was based on work supported by the Center for Advanced Molecular Photovoltaics (CAMP) funded by King Abdullah University of Science and Technology (KAUST) under award no. KUS-C1-015-21. It was also supported by the Department of Energy (grant no. DE-FG07ER46426). The authors thank P. Landreman and V. Esfandyarpour for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.E. and M.L.B. conceived the idea of using metamaterial mirrors in optical devices. M.E. performed the optical simulations. M.E. and E.C.G. fabricated and tested the devices. All authors were involved in analysing the data and writing the manuscript.

Corresponding author

Correspondence to Mark L. Brongersma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 2278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfandyarpour, M., Garnett, E., Cui, Y. et al. Metamaterial mirrors in optoelectronic devices. Nature Nanotech 9, 542–547 (2014). https://doi.org/10.1038/nnano.2014.117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing