Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective transport control on molecular velcro made from intrinsically disordered proteins

Abstract

The selectivity and speed of many biological transport processes1 transpire from a ‘reduction of dimensionality’2 that confines diffusion to one or two dimensions instead of three3. This behaviour remains highly sought after on polymeric surfaces4 as a means to expedite diffusional search processes in molecular engineered systems. Here, we have reconstituted the two-dimensional diffusion of colloidal particles on a molecular brush surface. The surface is composed of phenylalanine-glycine nucleoporins (FG Nups)5—intrinsically disordered proteins that facilitate selective transport through nuclear pore complexes in eukaryotic cells6. Local and ensemble-level experiments involving optical trapping using a photonic force microscope7 and particle tracking by video microscopy8, respectively, reveal that 1-µm-sized colloidal particles bearing nuclear transport receptors9 called karyopherins can exhibit behaviour that varies from highly localized to unhindered two-dimensional diffusion. Particle diffusivity is controlled by varying the amount of free karyopherins in solution, which modulates the multivalency of Kap-binding sites within the molecular brush10. We conclude that the FG Nups resemble stimuli-responsive11 molecular ‘velcro’, which can impart ‘reduction of dimensionality’ as a means of biomimetic transport control in artificial environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of Kapβ1 concentration on Kap-probe binding and mobility.
Figure 2: Changes to local Kap-probe diffusivity with increasing Kapβ1 concentration.
Figure 3: Effect of Kapβ1 concentration on ensemble Kap-probe probability distribution and lateral diffusivity.
Figure 4: Reduction of dimensionality by the ‘dirty velcro effect’.

Similar content being viewed by others

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. Molecular Biology of the Cell 4th edn (Garland, 2002).

  2. Adam, G. & Delbrück, M. in Structural Chemistry and Molecular Biology (eds Rich, A. & Davidson, N.) 198–215 (W.H. Freeman, 1968).

  3. Berg, O. G. & Vonhippel, P. H. Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem. 14, 131–160 (1985).

    Article  CAS  Google Scholar 

  4. Santer, S. & Ruhe, J. Motion of nano-objects on polymer brushes. Polymer 45, 8279–8297 (2004).

    Article  CAS  Google Scholar 

  5. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).

    Article  CAS  Google Scholar 

  6. Grunwald, D., Singer, R. H. & Rout, M. Nuclear export dynamics of RNA–protein complexes. Nature 475, 333–341 (2011).

    Article  Google Scholar 

  7. Jeney, S., Mor, F., Koszali, R., Forro, L. & Moy, V. T. Monitoring ligand–receptor interactions by photonic force microscopy. Nanotechnology 21, 255102 (2010).

  8. Dettmer, S. L., Keyser, U. F. & Pagliara, S. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking. Rev. Sci. Instrum. 85, 23708 (2014).

    Article  Google Scholar 

  9. Chook, Y. M. & Sueel, K. E. Nuclear import by karyopherin-betas: recognition and inhibition. Biochim. Biophys. Acta 1813, 1593–1606 (2011).

    Article  CAS  Google Scholar 

  10. Kapinos, L. E., Schoch, R. L., Wagner, R. S., Schleicher, K. D. & Lim, R. Y. H. Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG-nucleoporins. Biophys. J. 106, 1751–1762 (2014).

    Article  CAS  Google Scholar 

  11. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 9, 101–113 (2010).

    Article  Google Scholar 

  12. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  13. Van den Heuvel, M. G. L. & Dekker, C. Motor proteins at work for nanotechnology. Science 317, 333–336 (2007).

    Article  CAS  Google Scholar 

  14. Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6, 421–427 (2005).

    Article  CAS  Google Scholar 

  15. Elbaum, M. Polymers in the pore. Science 314, 766–767 (2006).

    Article  CAS  Google Scholar 

  16. Jovanovic-Talisman, T. et al. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 457, 1023–1027 (2009).

    Article  CAS  Google Scholar 

  17. Kowalczyk, S. W. et al. Single-molecule transport across an individual biomimetic nuclear pore complex. Nature Nanotech. 6, 433–438 (2011).

    Article  CAS  Google Scholar 

  18. Lim, R. Y. H. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318, 640–643 (2007).

    Article  CAS  Google Scholar 

  19. Patel, S. S., Belmont, B. J., Sante, J. M. & Rexach, M. F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 83–96 (2007).

    Article  CAS  Google Scholar 

  20. Mammen, M., Choi, S. K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2755–2794 (1998).

    Article  CAS  Google Scholar 

  21. Isgro, T. A. & Schulten, K. Binding dynamics of isolated nucleoporin repeat regions to importin-beta. Structure 13, 1869–1879 (2005).

    Article  CAS  Google Scholar 

  22. Paradise, A., Levin, M. K., Korza, G. & Carson, J. H. Significant proportions of nuclear transport proteins with reduced intracellular mobilities resolved by fluorescence correlation spectroscopy. J. Mol. Biol. 365, 50–65 (2007).

    Article  CAS  Google Scholar 

  23. Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics (Martinus Nijhoff, 1983).

  24. Perl, A. et al. Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nature Chem. 3, 317–322 (2011).

    Article  CAS  Google Scholar 

  25. Martinez-Veracoechea, F. J. & Frenkel, D. Designing super selectivity in multivalent nano-particle binding. Proc. Natl Acad. Sci. USA 108, 10963–10968 (2011).

    Article  CAS  Google Scholar 

  26. Bormuth, V., Varga, V., Howard, J. & Schaffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870–873 (2009).

    Article  CAS  Google Scholar 

  27. Yang, W. D. & Musser, S. M. Nuclear import time and transport efficiency depend on importin beta concentration. J. Cell Biol. 174, 951–961 (2006).

    Article  CAS  Google Scholar 

  28. Tu, L. C., Fu, G., Zilman, A. & Musser, S. M. Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins. EMBO J. 32, 3220–3230 (2013).

    Article  CAS  Google Scholar 

  29. Jacobson, K., Ishihara, A. & Inman, R. Lateral diffusion of proteins in membranes. Annu. Rev. Physiol. 49, 163–175 (1987).

    Article  CAS  Google Scholar 

  30. Eichmann, S. L., Meric, G., Swavola, J. C. & Bevan, M. A. Diffusing colloidal probes of protein–carbohydrate interactions. Langmuir 29, 2299–2310 (2013).

    Article  CAS  Google Scholar 

  31. Uversky, V. N. Intrinsically disordered proteins from A to Z. Int. J. Biochem. Cell Biol. 43, 1090–1103 (2011).

    Article  CAS  Google Scholar 

  32. Pierres, A., Benoliel, A. M. & Bongrand, P. Measuring the lifetime of bonds made between surface-linked molecules. J. Biol. Chem. 270, 26586–26592 (1995).

    Article  CAS  Google Scholar 

  33. Srinivasan, N. & Kumar, S. Ordered and disordered proteins as nanomaterial building blocks. Nanomed. Nanobiotechnol. 4, 204–218 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R.L. Schoch, M. Grimm and F.M. Mor for assistance and discussions. R.Y.H.L., K.D.S. and L.E.K. acknowledge support from the National Centre of Competence in Research ‘Molecular Systems Engineering’, the Swiss National Science Foundation, the Biozentrum and the Swiss Nanoscience Institute. S.J. acknowledges support from the Swiss National Science Foundation (SNF grant nos R'Equip 206021_121396 and 200021_143703). S.L.D. acknowledges the German Academic Exchange Service and the German National Academic Foundation. S.P. and U.F.K. acknowledge support from an ERC starting grant. S.P. also acknowledges support from the Leverhulme and Newton Trust through an Early Career Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

K.D.S. conceived and carried out the experiments, wrote the manuscript, and analysed and interpreted the data. S.L.D. developed the tracking software and analysed the data. S.P. developed the tracking software and analysed the data. L.E.K. contributed proteins and interpreted data. U.F.K. analysed and interpreted data. S.J. designed and built the experimental set-up, conceived the experiment and the PFM data analysis protocol. R.Y.H.L. conceived the experiment, interpreted data and wrote the manuscript. All authors contributed to, discussed and commented on the manuscript.

Corresponding author

Correspondence to Roderick Y. H. Lim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 2142 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 100 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 102 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schleicher, K., Dettmer, S., Kapinos, L. et al. Selective transport control on molecular velcro made from intrinsically disordered proteins. Nature Nanotech 9, 525–530 (2014). https://doi.org/10.1038/nnano.2014.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing