Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum dots with single-atom precision

Subjects

Abstract

Quantum dots are often called artificial atoms because, like real atoms, they confine electrons to quantized states with discrete energies. However, although real atoms are identical, most quantum dots comprise hundreds or thousands of atoms, with inevitable variations in size and shape and, consequently, unavoidable variability in their wavefunctions and energies. Electrostatic gates can be used to mitigate these variations by adjusting the electron energy levels1,2,3, but the more ambitious goal of creating quantum dots with intrinsically digital fidelity by eliminating statistical variations in their size, shape and arrangement remains elusive4,5,6,7,8,9. We used a scanning tunnelling microscope to create quantum dots with identical, deterministic sizes. By using the lattice of a reconstructed semiconductor surface to fix the position of each atom, we controlled the shape and location of the dots with effectively zero error. This allowed us to construct quantum dot molecules whose coupling has no intrinsic variation but could nonetheless be tuned with arbitrary precision over a wide range. Digital fidelity opens the door to quantum dot architectures free of intrinsic broadening—an important goal for technologies from nanophotonics10 to quantum information processing11,12 as well as for fundamental studies of confined electrons13,14,15,16,17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantized states of a digital quantum dot in which electrons are confined by a chain of ionized adatoms.
Figure 2: Theoretical description of pristine and quantized surface states.
Figure 3: Antibonding states of two weakly coupled adatom chains forming a digital quantum dot molecule.
Figure 4: Protected degeneracy in a digital triple dot.

Similar content being viewed by others

References

  1. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P. & McKuen, P. L. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701 (1997).

    Article  CAS  Google Scholar 

  2. Fujisawa, T. et al. Spontaneous emission spectrum in double quantum dot devices. Science 282, 932–935 (1998).

    Article  CAS  Google Scholar 

  3. Shibata, K., Yuan, H., Iwasa, Y. & Hirakawa, K. Large modulation of zero-dimensional electronic states in quantum dots by electric-double-layer gating. Nature Commun. 4, 2664 (2013).

    Article  Google Scholar 

  4. Wegscheider, W., Schedelbeck, G., Abstreiter, G., Rother, M. & Bichler, M. Atomically precise GaAs/AlGaAs quantum dots fabricated by twofold cleaved edge overgrowth. Phys. Rev. Lett. 79, 1917–1920 (1997).

    Article  CAS  Google Scholar 

  5. Schedelbeck, G., Wegscheider, W., Bichler, M. & Abstreiter, G. Coupled quantum dots fabricated by cleaved edge overgrowth: from artificial atoms to molecules. Science 278, 1792–1795 (1997).

    Article  CAS  Google Scholar 

  6. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    Article  CAS  Google Scholar 

  7. Atkinson, P., Schmidt, O. G., Bremner, S. P. & Ritchie, D. A. Formation and ordering of epitaxial quantum dots. C. R. Physique 9, 788–803 (2008).

    Article  CAS  Google Scholar 

  8. Ropp, C. et al. Positioning and immobilization of individual quantum dots with nanoscale precision. Nano Lett. 10, 4673–4679 (2010).

    Article  CAS  Google Scholar 

  9. Yakes, M. K. et al. Leveraging crystal anisotropy for deterministic growth of InAs quantum dots with narrow optical linewidths. Nano Lett. 13, 4870–4875 (2013).

    Article  CAS  Google Scholar 

  10. Gudjonson, H. et al. Accounting for inhomogeneous broadening in nano-optics by electromagnetic modeling based on Monte Carlo methods. Proc. Natl Acad. Sci. USA 111, E639–E644 (2014).

    Article  Google Scholar 

  11. Doucot, B. & Ioffe, L. B. Physical implementation of protected qubits. Rep. Prog. Phys. 75, 072001 (2012).

    Article  CAS  Google Scholar 

  12. Weinstein, Y. S. & Hellberg, C. S. Scalable architecture for coherence-preserving qubits. Phys. Rev. Lett. 98, 110501 (2007).

    Article  Google Scholar 

  13. Snijders, P. C. & Weitering, H. H. Colloquium: electronic instabilities in self-assembled atom wires. Rev. Mod. Phys. 82, 307–329 (2010).

    Article  CAS  Google Scholar 

  14. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  15. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article  Google Scholar 

  16. Bayer, M. et al. Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001).

    Article  CAS  Google Scholar 

  17. Jeong, H., Chang, A. M. & Melloch, M. R. The Kondo effect in an artificial quantum dot molecule. Science 293, 221–223 (2001).

    Article  Google Scholar 

  18. Stroscio, J. A. & Eigler, D. M. Atomic and molecular manipulation with the scanning tunneling microscope. Science 254, 1319–1326 (1991).

    Article  CAS  Google Scholar 

  19. Tong, S. Y., Xu, G. & Mei, W. N. Vacancy-buckling model for the (2×2) GaAs(111) surface. Phys. Rev. Lett. 52, 1693–1696 (1984).

    Article  CAS  Google Scholar 

  20. Kanisawa, K. & Fujisawa, T. Mechanism of electron accumulation layer formation at the MBE-grown InAs(111)A surface. Hyomen Kagaku 29, 747–757 (2008).

    Article  CAS  Google Scholar 

  21. Yang, J., Erwin, S. C., Kanisawa, K., Nacci, C. & Fölsch, S. Emergent multistability in assembled nanostructures. Nano Lett. 11, 2486–2489 (2011).

    Article  CAS  Google Scholar 

  22. Fölsch, S., Yang, J., Nacci, C. & Kanisawa, K. Atom-by-atom quantum state control in adatom chains on a semiconductor. Phys. Rev. Lett. 103, 096104 (2009).

    Article  Google Scholar 

  23. Nilius, N., Wallis, T. M. & Ho, W. Development of one-dimensional band structure in artificial gold chains. Science 297, 1853–1856 (2002).

    Article  CAS  Google Scholar 

  24. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  25. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  26. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  27. Olsson, L. Ö. et al. Charge accumulation at InAs surfaces. Phys. Rev. Lett. 76, 3626–3629 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C.S. Hellberg, Al. L. Efros and E.I. Rashba for discussions. This work was supported by the German Research Foundation (FO 362/4-1) and the Office of Naval Research through the Naval Research Laboratory's Basic Research Program. Computations were performed at the DoD Major Shared Resource Center at AFRL.

Author information

Authors and Affiliations

Authors

Contributions

J.Y., J.M-B., and S.F. performed the experiments. S.F. carried out the experimental data analysis. K.K. performed the MBE growth of the samples and participated in discussions of the results. S.C.E. performed the DFT calculations and tight-binding theoretical modelling. S.F. and S.C.E. wrote the manuscript.

Corresponding authors

Correspondence to Stefan Fölsch or Steven C. Erwin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 2496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fölsch, S., Martínez-Blanco, J., Yang, J. et al. Quantum dots with single-atom precision. Nature Nanotech 9, 505–508 (2014). https://doi.org/10.1038/nnano.2014.129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing