Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanophotonic trapping for precise manipulation of biomolecular arrays

Abstract

Optical trapping is a powerful manipulation and measurement technique widely used in the biological and materials sciences1,2,3,4,5,6,7,8. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high-throughput lab-on-a-chip applications9,10,11,12,13,14,15,16. However, a persistent challenge with existing optofluidic devices has been achieving controlled and precise manipulation of trapped particles. Here, we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (30 kHz) with nanometre precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential to achieve high-throughput precision measurements on chip.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and fabrication of an nSWAT device.
Figure 2: Trapping stability and resolution.
Figure 3: Controlled long-range transportation by an nSWAT.
Figure 4: Manipulation, transport and change of chemical environment of biomolecules.

Similar content being viewed by others

References

  1. Chu, S. The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).

    Article  CAS  Google Scholar 

  2. Forth, S., Sheinin, M., Inman, J. & Wang, M. Torque measurement at the single-molecule level. Annu. Rev. Biophys. 42, 583–604 (2013).

    Article  CAS  Google Scholar 

  3. Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    Article  CAS  Google Scholar 

  4. Hilario, J. & Kowalczykowski, S. C. Visualizing protein–DNA interactions at the single-molecule level. Curr. Opin. Chem. Biol. 14, 15–22 (2010).

    Article  CAS  Google Scholar 

  5. Dholakia, K. & Cizmar, T. Shaping the future of manipulation. Nature Photon. 5, 335–342 (2011).

    Article  CAS  Google Scholar 

  6. Padgett, M. & Bowman, R. Tweezers with a twist. Nature Photon. 5, 343–348 (2011).

    Article  CAS  Google Scholar 

  7. Jannasch, A., Demirors, A. F., van Oostrum, P. D. J., van Blaaderen, A. & Schaffer, E. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nature Photon. 6, 469–473 (2012).

    Article  CAS  Google Scholar 

  8. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  CAS  Google Scholar 

  9. Fainman, Y., Psaltis, D. & Yang, C. Optofluidics: Fundamentals, Devices, and Applications Ch. 17, (McGraw-Hill, 2010).

  10. Erickson, D., Serey, X., Chen, Y. F. & Mandal, S. Nanomanipulation using near field photonics. Lab on a Chip 11, 995–1009 (2011).

    Article  CAS  Google Scholar 

  11. Erickson, D., Rockwood, T., Emery, T., Scherer, A. & Psaltis, D. Nanofluidic tuning of photonic crystal circuits. Opt. Lett. 31, 59–61 (2006).

    Article  Google Scholar 

  12. Diehl, L. et al. Microfluidic tuning of distributed feedback quantum cascade lasers. Opt. Express 14, 11660–11667 (2006).

    Article  CAS  Google Scholar 

  13. Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    Article  CAS  Google Scholar 

  14. Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photon. 5, 349–356 (2011).

    Article  CAS  Google Scholar 

  15. Schmidt, H. & Hawkins, A. R. The photonic integration of non-solid media using optofluidics. Nature Photon. 5, 598–604 (2011).

    Article  CAS  Google Scholar 

  16. Fan, X. D. & White, I. M. Optofluidic microsystems for chemical and biological analysis. Nature Photon. 5, 591–597 (2011).

    Article  CAS  Google Scholar 

  17. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T. & White, D. C. Movement and force produced by a single myosin head. Nature 378, 209–112 (1995).

    Article  CAS  Google Scholar 

  18. Farre, A., van der Horst, A., Blab, G. A., Downing, B. P. B. & Forde, N. R. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers. J. Biophoton. 3, 224–233 (2010).

    Article  CAS  Google Scholar 

  19. Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009).

    Article  CAS  Google Scholar 

  20. Lin, S. Y. & Crozier, K. B. Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles. Lab on a Chip 11, 4047–4051 (2011).

    Article  CAS  Google Scholar 

  21. Lin, S. Y. & Crozier, K. B. An integrated microparticle sorting system based on near-field optical forces and a structural perturbation. Opt. Express 20, 3367–3374 (2012).

    Article  Google Scholar 

  22. Schmidt, B. S., Yang, A. H. J., Erickson, D. & Lipson, M. Optofluidic trapping and transport on solid core waveguides within a microfluidic device. Opt. Express 15, 14322–14334 (2007).

    Article  CAS  Google Scholar 

  23. Mandal, S., Serey, X. & Erickson, D. Nanomanipulation using silicon photonic crystal resonators. Nano Lett. 10, 99–104 (2010).

    Article  CAS  Google Scholar 

  24. Renaut, C. et al. On chip shapeable optical tweezers. Sci. Rep. 3, 2290–2293 (2013).

    Article  CAS  Google Scholar 

  25. Jaquay, E., Martinez, L. J., Mejia, C. A. & Povinelli, M. L. Light-assisted, templated self-assembly using a photonic-crystal slab. Nano Lett. 13, 2290–2294 (2013).

    Article  CAS  Google Scholar 

  26. Lei, T. & Poon, A. W. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation. Opt. Express 21, 1520–1530 (2013).

    Article  CAS  Google Scholar 

  27. Soltani, M., Inman, J. T., Lipson, M. & Wang, M. D. Electro-optofluidics: achieving dynamic control on-chip. Opt. Express 20, 22314–22326 (2012).

    Article  Google Scholar 

  28. Atabaki, A. H., Hosseini, E. S., Eftekhar, A. A., Yegnanarayanan, S. & Adibi, A. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics. Opt. Express 18, 18312–18323 (2010).

    Article  CAS  Google Scholar 

  29. Moffitt, J. R., Chemla, Y. R., Izhaky, D. & Bustamante, C. Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc. Natl Acad. Sci. USA 103, 9006–9011 (2006).

    Article  CAS  Google Scholar 

  30. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. & Block, S. M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005).

    Article  CAS  Google Scholar 

  31. Sun, B. et al. ATP-induced helicase slippage reveals highly coordinated subunits. Nature 478, 132–135 (2011).

    Article  CAS  Google Scholar 

  32. Forget, A. L., Dombrowski, C. C., Amitani, I. & Kowalczykowski, S. C. Exploring protein–DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy. Nature Protoc. 8, 525–538 (2013).

    Article  CAS  Google Scholar 

  33. Gelles, J., Schnapp, B. J. & Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988).

    Article  CAS  Google Scholar 

  34. Fuller, D. N. et al. A general method for manipulating DNA sequences from any organism with optical tweezers. Nucleic Acids Res. 34, e15–e24 (2006).

    Article  Google Scholar 

  35. Laib, S., Robertson, R. M. & Smith, D. E. Preparation and characterization of a set of linear DNA molecules for polymer physics and rheology studies. Macromolecules 39, 4115–4119 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Wang Lab and the Lipson Lab for critical comments on this work. We especially thank J.L. Killian, L.D. Brennan, T. Roland, T.M. Konyakhina, and G.W. Feigenson for technical assistance. The authors acknowledge postdoctoral support to R.A.F. from the American Cancer Society (125126-PF-13-205-01-DMC), graduate traineeship support to S.N.S. from Cornell's Molecular Biophysics Training Grant funded by the National Institutes of Health (NIH, T32GM008267) and a National Science Foundation (NSF) Graduate Research Fellowship (grant no. DGE-1144153), and support to M.D.W. by the NIH (GM059849) and the NSF (MCB-0820293). This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the NSF (grant ECCS-0335765).

Author information

Authors and Affiliations

Authors

Contributions

M.D.W. conceived the original concept for nSWAT and supervised the project. M.D.W. and M.S. collaborated on the experimental design and implementation. M.S. tested and optimized early prototypes of the nSWAT device. M.S. designed and simulated detailed features necessary to realize the current nSWAT implementation. M.S. and J.L. fabricated the devices with help from J.T.I., S.N.S. and M.L. J.L., R.A.F., M.S., J.T.I., S.N.S. and M.D.W. designed the measurement experiments. J.L., R.A.F., M.S. and S.N.S. performed the experiments with help from J.T.I. R.A.F., M.S. and J.L. analysed the data with help from S.N.S. J.T.I., J.L., R.A.F, M.S., S.N.S. and R.M.F. upgraded an existing measurement setup. M.D.W. and M.L. contributed materials/analysis tools. All authors contributed in drafting of the manuscript.

Corresponding author

Correspondence to Michelle D. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 711 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 1776 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 1816 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 3046 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, M., Lin, J., Forties, R. et al. Nanophotonic trapping for precise manipulation of biomolecular arrays. Nature Nanotech 9, 448–452 (2014). https://doi.org/10.1038/nnano.2014.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing