Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biogenic gas nanostructures as ultrasonic molecular reporters

Abstract

Ultrasound is among the most widely used non-invasive imaging modalities in biomedicine1, but plays a surprisingly small role in molecular imaging due to a lack of suitable molecular reporters on the nanoscale. Here, we introduce a new class of reporters for ultrasound based on genetically encoded gas nanostructures from microorganisms, including bacteria and archaea. Gas vesicles are gas-filled protein-shelled compartments with typical widths of 45–250 nm and lengths of 100–600 nm that exclude water and are permeable to gas2,3. We show that gas vesicles produce stable ultrasound contrast that is readily detected in vitro and in vivo, that their genetically encoded physical properties enable multiple modes of imaging, and that contrast enhancement through aggregation permits their use as molecular biosensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gas vesicles produce ultrasound contrast.
Figure 2: Nonlinear imaging and genetic diversity enable enhanced contrast specificity and selective disruption imaging.
Figure 3: Gas vesicles act as biomolecular sensors and report cellular integrity.
Figure 4: Gas vesicles produce ultrasound contrast in vivo.

Similar content being viewed by others

References

  1. Smith-Bindman, R. et al. Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996–2010. J. Am. Med. Assoc. 307, 2400–2409 (2012).

    Article  CAS  Google Scholar 

  2. Walsby, A. E. Gas vesicles. Microbiol. Rev. 58, 94–144 (1994).

    Google Scholar 

  3. Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nature Rev. Microbiol. 10, 705–715 (2012).

    Article  CAS  Google Scholar 

  4. Gramiak, R., Shah, P. M. & Kramer, D. H. Ultrasound cardiography—contrast studies in anatomy and function. Radiology 92, 939–948 (1969).

    Article  CAS  Google Scholar 

  5. Ferrara, K., Pollard, R. & Borden, M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007).

    Article  CAS  Google Scholar 

  6. Kaufmann, B. A. & Lindner, J. R. Molecular imaging with targeted contrast ultrasound. Curr. Opin. Biotechnol. 18, 11–16 (2007).

    Article  CAS  Google Scholar 

  7. Cosgrove, D. & Harvey, C. Clinical uses of microbubbles in diagnosis and treatment. Med. Biol. Eng. Comput. 47, 813–826 (2009).

    Article  Google Scholar 

  8. Cui, W. et al. Neural progenitor cells labeling with microbubble contrast agent for ultrasound imaging in vivo. Biomaterials 34, 4926–4935 (2013).

    Article  CAS  Google Scholar 

  9. Kircher, M. F., Gambhir, S. S. & Grimm, J. Noninvasive cell-tracking methods. Nature Rev. Clin. Oncol. 8, 677–688 (2011).

    Article  CAS  Google Scholar 

  10. Liu, J. et al. Nanoparticles as image enhancing agents for ultrasonography. Phys. Med. Biol. 51, 2179–2189 (2006).

    Article  CAS  Google Scholar 

  11. Lanza, G. M. et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94, 3334–3340 (1996).

    Article  CAS  Google Scholar 

  12. Martinez, H. P. et al. Hard shell gas-filled contrast enhancement particles for colour Doppler ultrasound imaging of tumors. Medchemcomm 1, 266–270 (2010).

    Article  CAS  Google Scholar 

  13. Kripfgans, O. D., Fowlkes, J. B., Miller, D. L., Eldevik, O. P. & Carson, P. L. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med. Biol. 26, 1177–1189 (2000).

    Article  CAS  Google Scholar 

  14. James, M. L. & Gambhir, S. S. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev. 92, 897–965 (2012).

    Article  CAS  Google Scholar 

  15. Klebahn, H. Gasvakuolen, ein Bestandteil der Zellen der wasserblutenbildenden Phycochromaceen. Flora (Jena) 80, 241–282 (1895).

    Google Scholar 

  16. Walsby, A. E. Pressure relationships of gas vacuoles. Proc. R. Soc. B 178, 301–326 (1971).

    Article  Google Scholar 

  17. Burns, P. N. Harmonic imaging with ultrasound contrast agents. Clin. Radiol. 51, 50–55 (1996).

    Google Scholar 

  18. De Jong, N., Bouakaz, A. & Frinking, P. Basic acoustic properties of microbubbles. Echocardiography 19, 229–240 (2002).

    Article  Google Scholar 

  19. Hauff, P., Reinhardt, M. & Foster, S. in Molecular Imaging I (eds Semmler, W. & Schwaiger, M.) 223–245 (Springer, 2008).

    Book  Google Scholar 

  20. Perez, J. M., Josephson, L., O'Loughlin, T., Hogemann, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nature Biotechnol. 20, 816–820 (2002).

    Article  CAS  Google Scholar 

  21. Oliver, R. L. & Walsby, A. E. Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (cyanobacteria). Limnol. Oceanogr. 29, 879–886 (1984).

    Article  Google Scholar 

  22. Kashyap, S., Sundararajan, A. & Ju, L. K. Flotation characteristics of cyanobacterium Anabaena flos-aquae for gas vesicle production. Biotechnol. Bioeng. 60, 636–641 (1998).

    Article  CAS  Google Scholar 

  23. Geier, M. R., Trigg, M. E. & Merril, C. R. Fate of bacteriophage lambda in non-immune germ-free mice. Nature 246, 221–222 (1973).

    Article  CAS  Google Scholar 

  24. Foster, F. S., Pavlin, C. J., Harasiewicz, K. A., Christopher, D. A. & Turnbull, D. H. Advances in ultrasound biomicroscopy. Ultrasound Med. Biol. 26, 1–27 (2000).

    Article  CAS  Google Scholar 

  25. Frinking, P. J. & de Jong, N. Acoustic modeling of shell-encapsulated gas bubbles. Ultrasound Med. Biol. 24, 523–533 (1998).

    Article  CAS  Google Scholar 

  26. Hoff, L., Sontum, P. C. & Hovem, J. M. Oscillations of polymeric microbubbles: effect of the encapsulating shell. J. Acoust. Soc. Am. 107, 2272–2280 (2000).

    Article  CAS  Google Scholar 

  27. Medwin, H. Counting bubbles acoustically: a review. Ultrasonics 15, 7–13 (1977).

    Article  Google Scholar 

  28. Yuan, F. et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55, 3752–3756 (1995).

    CAS  Google Scholar 

  29. Jokerst, J. V., Lobovkina, T., Zare, R. N. & Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6, 715–728 (2011).

    Article  CAS  Google Scholar 

  30. Li, N. & Cannon, M. C. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J. Bacteriol. 180, 2450–2458 (1998).

    CAS  Google Scholar 

  31. Jost, M., Jones, D. D. & Weathers, P. J. Counting of gas vacuoles by electron microscopy in lysates and purified fractions of Microcystis aeruginosa. Protoplasma 73, 329–335 (1971).

    Article  CAS  Google Scholar 

  32. Walsby, A. E. & Armstrong, R. E. Average thickness of the gas vesicle wall in Anabaena flos-aquae. J. Mol. Biol. 129, 279–285 (1979).

    Article  CAS  Google Scholar 

  33. Yao, A. I. & Facciotti, M. T. Regulatory multidimensionality of gas vesicle biogenesis in Halobacterium salinarum NRC-1. Archaea 2011, 716456 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank P. Lum for ultrasound equipment and advice, R. Zalpuri and K. McDonald for assistance with electron microscopy, K-K. Park and P. Khuri-Yakub for assistance with hydrophone measurements, E. Chérin for input on in vivo experiments and the manuscript, and A. Bar-Zion for assistance with data analysis. M.G.S. acknowledges funding from the Miller Research Institute and the Burroughs Wellcome Career Award at the Scientific Interface. Other funding was provided by California Institute for Regenerative Medicine grant RT2-02022 (D.V.S.), National Institutes of Health grant R01EB013689 (S.M.C), the Canadian Institutes of Health Research (F.S.F.) and the Terry Fox Foundation (F.S.F.).

Author information

Authors and Affiliations

Authors

Contributions

M.G.S. conceived and directed the study, planned the experiments, prepared the specimens, collected, analysed and interpreted the data, and wrote the manuscript, with input from all other authors. P.W.G. designed and constructed the imaging instrument and accompanying signal processing software, and assisted with initial experiments. A.N. designed, constructed and optimized the imaging instrument and accompanying signal processing software. F.S.F. and M.Y. designed, performed and analysed the data from in vivo experiments. All authors provided input on the study and experimental design, data analysis, data interpretation and the manuscript.

Corresponding author

Correspondence to Mikhail G. Shapiro.

Ethics declarations

Competing interests

F. Stuart Foster is a consultant to VisualSonics.

Supplementary information

Supplementary information

Supplementary Information (PDF 1058 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 10340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, M., Goodwill, P., Neogy, A. et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nature Nanotech 9, 311–316 (2014). https://doi.org/10.1038/nnano.2014.32

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.32

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing