Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna

Abstract

The ability to convert low-energy quanta into a quantum of higher energy is of great interest for a variety of applications, including bioimaging1, drug delivery2 and photovoltaics3. Although high conversion efficiencies can be achieved using macroscopic nonlinear crystals, upconverting light at the nanometre scale remains challenging because the subwavelength scale of materials prevents the exploitation of phase-matching processes4. Light–plasmon interactions that occur in nanostructured noble metals have offered alternative opportunities for nonlinear upconversion of infrared light, but conversion efficiency rates remain extremely low due to the weak penetration of the exciting fields into the metal5. Here, we show that third-harmonic generation from an individual semiconductor indium tin oxide nanoparticle is significantly enhanced when coupled within a plasmonic gold dimer. The plasmonic dimer acts as a receiving optical antenna6, confining the incident far-field radiation into a near field localized at its gap; the indium tin oxide nanoparticle located at the plasmonic dimer gap acts as a localized nonlinear transmitter upconverting three incident photons at frequency ω into a photon at frequency 3ω. This hybrid nanodevice provides third-harmonic-generation enhancements of up to 106-fold compared with an isolated indium tin oxide nanoparticle, with an effective third-order susceptibility up to 3.5 × 103 nm2 V−2 and conversion efficiency of 0.0007%. We also show that the upconverted third-harmonic emission can be exploited to probe the near-field intensity at the plasmonic dimer gap.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nonlinear upconversion nanosystem.
Figure 2: Three-photon upconversion enhancement from a single ITO nanoparticle decorated with a plasmonic dimer.
Figure 3: Probing plasmonic hot spots with a nanoscale nonlinear particle.

Similar content being viewed by others

References

  1. Débarre, D. et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nature Methods 3, 47–53 (2006).

    Article  Google Scholar 

  2. Zhou, J., Liu, Z. & Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323–1349 (2012).

    Article  CAS  Google Scholar 

  3. Zou, W. Q., Visser, C., Maduro, J. A., Pshenichnikov, M. S. & Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nature Photon. 6, 560–564 (2012).

    Article  CAS  Google Scholar 

  4. Agio, M. & Alù, A. Optical Antennas (Cambridge Univ. Press, 2013).

    Google Scholar 

  5. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nature Photon. 6, 737–748 (2012).

    Article  CAS  Google Scholar 

  6. Novotny, L. & van Hulst, N. Antennas for light. Nature Photon. 5, 83–90 (2011).

    Article  CAS  Google Scholar 

  7. Franken, P. A., Hill, A. E., Peter, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

    Article  Google Scholar 

  8. Xie, X. S., Yu, J. & Yang, W. Y. Living cells as test tubes. Science 312, 228–230 (2006).

    Article  CAS  Google Scholar 

  9. Tian, G. et al. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater. 24, 1226–1231 (2012).

    Article  CAS  Google Scholar 

  10. Wang, H-Q., Batentschuk, M., Osvet, A., Pinna, L. & Brabec, C. J. Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 23, 2675–2680 (2011).

    Article  CAS  Google Scholar 

  11. Lamprecht, B., Krenn, J. R., Leitner, A. & Aussenegg, F. R. Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation. Phys. Rev. Lett. 83, 4421 (1999).

    Article  CAS  Google Scholar 

  12. Mühlschlegel, P., Eisler, H-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  Google Scholar 

  13. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    Article  CAS  Google Scholar 

  14. Cai, W., Vasudev, A. P. & Brongersma, M. L. Electrically controlled nonlinear generation of light with plasmonics. Science 333, 1720–1723 (2011).

    Article  CAS  Google Scholar 

  15. Abb, M., Albella, P., Aizpurua, J. & Muskens, O. L. All-optical control of a single plasmonic nanoantenna–ITO hybrid. Nano Lett. 11, 2457–2463 (2011).

    Article  CAS  Google Scholar 

  16. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    Article  CAS  Google Scholar 

  17. Hanke, T. et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett. 12, 992–996 (2012).

    Article  CAS  Google Scholar 

  18. Hentschel, M., Utikal, T., Giessen, H. & Lippitz, M. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett. 12, 3778–3782 (2012).

    Article  CAS  Google Scholar 

  19. Melentiev, P. N., Afanasiev, A. E., Kuzin, A. A., Baturin, S. A. & Balykin, V. I. Giant optical nonlinearity of a single plasmonic nanostructure. Opt. Express. 21, 13896–13905 (2013).

    Article  Google Scholar 

  20. Koller, D. M. et al. Superresolution Moiré mapping of particle plasmon modes. Phys. Rev. Lett. 104, 143901 (2010).

    Article  CAS  Google Scholar 

  21. Dregely, D., Neubrech, F., Duan, H., Vogelgesang, R. & Giessen, H. Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures. Nature Commun. 4, 2237 (2013).

    Article  Google Scholar 

  22. Bermúdez Ureña, E. et al. Excitation enhancement of a quantum dot coupled to a plasmonic antenna. Adv. Mater. 24, OP314–OP320 (2012).

    Google Scholar 

  23. Liu, N. et al. Individual nanoantennas loaded with three-dimensional optical nanocircuit. Nano Lett. 13, 142–147 (2013).

    Article  CAS  Google Scholar 

  24. Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1985).

    Google Scholar 

  25. Humphrey, J. L. & Kuciauskas, D. Optical susceptibilities of supported indium tin oxide thin films. J. Appl. Phys. 100, 113123 (2006).

    Article  Google Scholar 

  26. Alaverdyan, Y. et al. Spectral tunability of a plasmonic antenna with a dielectric nanocrystal. Opt. Express 19, 18175–18181 (2011).

    Article  CAS  Google Scholar 

  27. Giannini, V., Fernández-Domínguez, A. I., Heck, S. C. & Maier, S. A. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 6, 3888–3912 (2011).

    Article  Google Scholar 

  28. Ganeev, R. A., Kulagin, I. A., Ryasnyansky, A. I., Tugushev, R. I. & Usmanov, T. Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals. Opt. Commun. 229, 403–412 (2004).

    Article  CAS  Google Scholar 

  29. Harutyunyan, H., Volpe, G., Quidant, R. & Novotny, L. Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett. 108, 217403 (2012).

    Article  Google Scholar 

  30. Navarro-Cia, M. & Maier, S. A. Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano 6, 3537–3544 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Rakovich for fabrication of preliminary samples, Y. Sonnefraud for help with sample characterization and V. Giannini and A. I. Fernández-Domínguez for discussions. This work was funded by the Engineering and Physical Sciences Research Council (EPSRC) through the Active Plasmonics programme, the Leverhulme Trust, the US Army International Technology Centre Atlantic (USAITC-A) and the Office of Naval Research (ONR and ONR Global). M.N-C. is supported by an Imperial College Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.A. and S.A.M. conceived and supervised the project. M.N-C. provided the numerical work, M.R. fabricated the samples and H.A. performed the experiments. H.A. wrote the manuscript. All authors participated in data processing, analysis, discussions and manuscript preparation.

Corresponding author

Correspondence to Heykel Aouani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1924 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aouani, H., Rahmani, M., Navarro-Cía, M. et al. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nature Nanotech 9, 290–294 (2014). https://doi.org/10.1038/nnano.2014.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.27

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing