Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide

Abstract

The p–n junction is the functional element of many electronic and optoelectronic devices, including diodes, bipolar transistors, photodetectors, light-emitting diodes and solar cells. In conventional p–n junctions, the adjacent p- and n-type regions of a semiconductor are formed by chemical doping. Ambipolar semiconductors, such as carbon nanotubes1, nanowires2 and organic molecules3, allow for p–n junctions to be configured and modified by electrostatic gating. This electrical control enables a single device to have multiple functionalities. Here, we report ambipolar monolayer WSe2 devices in which two local gates are used to define a p–n junction within the WSe2 sheet. With these electrically tunable p–n junctions, we demonstrate both p–n and n–p diodes with ideality factors better than 2. Under optical excitation, the diodes demonstrate a photodetection responsivity of 210 mA W–1 and photovoltaic power generation with a peak external quantum efficiency of 0.2%, promising values for a nearly transparent monolayer material in a lateral device geometry. Finally, we demonstrate a light-emitting diode based on monolayer WSe2. These devices provide a building block for ultrathin, flexible and nearly transparent optoelectronic and electronic applications based on ambipolar dichalcogenide materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gate-controlled monolayer WSe2 p–n junction diodes.
Figure 2: Current through the device as a function of doping configuration.
Figure 3: Photodetection in monolayer WSe2.
Figure 4: Photovoltaic response and light emission.

Similar content being viewed by others

References

  1. Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev.Lett. 87, 256805 (2001).

    Article  CAS  Google Scholar 

  2. Koo, S.-M., Li, Q., Edelstein, M., Richter, C. & Vogel, E. Enhanced channel modulation in dual-gated silicon nanowire transistors. Nano Lett. 5, 2519–2523 (2005).

    Article  CAS  Google Scholar 

  3. Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296–1323 (2007).

    Article  CAS  Google Scholar 

  4. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).

    Article  CAS  Google Scholar 

  5. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  6. Chuang, S. et al. Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes. Appl. Phys. Lett. 102, 242101 (2013).

    Article  Google Scholar 

  7. Tonndorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2 . Opt. Express 21, 4908–4916 (2013).

    Article  CAS  Google Scholar 

  8. Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).

    Article  CAS  Google Scholar 

  9. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  10. Wilson, J. & Yoffe, A. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    Article  CAS  Google Scholar 

  11. Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).

    Article  CAS  Google Scholar 

  12. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nature Mater. 12, 815–820 (2013).

    Article  CAS  Google Scholar 

  13. Zhang, Y. J., Ye, J. T., Yomogida, Y., Takenobu, T. & Iwasa, Y. Formation of a stable p–n junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett. 13, 3023–3028 (2013).

    Article  CAS  Google Scholar 

  14. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    Article  CAS  Google Scholar 

  15. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

    Article  CAS  Google Scholar 

  16. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 497–501 (2013).

    Article  CAS  Google Scholar 

  17. Sundaram, R. S. et al. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013).

    Article  CAS  Google Scholar 

  18. Ye, Y. et al. Exciton-related electroluminescence from monolayer MoS2 . Preprint at http://lanl.arXiv.org/abs/1305.4235 (2013).

  19. Zeng, H. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

    Article  Google Scholar 

  20. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  21. Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

    Article  Google Scholar 

  22. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

    Article  CAS  Google Scholar 

  23. Spah, R., Elrod, U., Luxsteiner, M., Bucher, E. & Wagner, S. PN junctions in tungsten diselenide. Appl. Phys. Lett. 43, 79–81 (1983).

    Article  Google Scholar 

  24. Lee, J. U., Gipp, P. P. & Heller, C. M. Carbon nanotube p–n junction diodes. Appl. Phys. Lett. 85, 145–147 (2004).

    Article  CAS  Google Scholar 

  25. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  26. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  27. Sah, C.-T., Noyce, R. N. & Shockley, W. Carrier generation and recombination in p–n junctions and p–n junction characteristics. Proc. IRE 45, 1228–1243 (1957).

    Article  Google Scholar 

  28. Banwell, T. & Jayakumar, A. Exact analytical solution for current flow through diode with series resistance. Electron. Lett. 36, 291–292 (2000).

    Article  Google Scholar 

  29. Buscema, M. et al. Large and tunable photo-thermoelectric effect in single-layer MoS2 . Nano Lett. 13, 358–363 (2013).

    Article  CAS  Google Scholar 

  30. Huang, J.-K. et al. Large-area and highly crystalline WSe2 monolayers: from synthesis to device applications. ACS Nano 8, 923–930 (2014).

    Article  CAS  Google Scholar 

  31. Li, X., Zhang, F. & Niu, Q. Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: application to an isolated MoS2 trilayer. Phys. Rev. Lett. 110, 066803 (2013).

    Article  Google Scholar 

  32. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2014.14 (2014).

  33. Ross, J. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. http://dx.doi.org/10.1038/nnano.2014.26 (2014).

Download references

Acknowledgements

The authors are grateful for experimental assistance provided by K. Akkaravarawong, T. Andersen, N. Gabor, Q. Lin, Q. Ma, W. Fang and J. Sanchez-Yamagishi, as well as for discussions with P. Brown. This work was primarily funded by the Office of Naval Research Young Investigator Award (N00014-13-1-0610) and partly by the Office of Naval Research Graphene Approaches to Terahertz Electronics Multidisciplinary University Research Initiative and a Packard Fellowship. This work made use of the Materials Research Science and Engineering Center Shared Experimental Facilities supported by the National Science Foundation (NSF) (award no. DMR-0819762) and of Harvard's Center for Nanoscale Systems, supported by the NSF (grant ECS-0335765).

Author information

Authors and Affiliations

Authors

Contributions

B.W.H.B., H.O.H.C. and Y.Y. fabricated the samples. B.W.H.B., H.O.H.C. and Y.Y. performed the measurements. All authors analysed the data and co-wrote the paper.

Corresponding author

Correspondence to Pablo Jarillo-Herrero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baugher, B., Churchill, H., Yang, Y. et al. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotech 9, 262–267 (2014). https://doi.org/10.1038/nnano.2014.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing