Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional manipulation with scanning near-field optical nanotweezers

Abstract

Recent advances in nanotechnologies have prompted the need for tools to accurately and non-invasively manipulate individual nano-objects1. Among the possible strategies, optical forces have been predicted to provide researchers with nano-optical tweezers capable of trapping a specimen and moving it in three dimensions2,3,4. In practice, however, the combination of weak optical forces and photothermal issues has thus far prevented their experimental realization. Here, we demonstrate the first three-dimensional optical manipulation of single 50 nm dielectric objects with near-field nanotweezers. The nano-optical trap is built by engineering a bowtie plasmonic aperture at the extremity of a tapered metal-coated optical fibre. Both the trapping operation and monitoring are performed through the optical fibre, making these nanotweezers totally autonomous and free of bulky optical elements. The achieved trapping performances allow for the trapped specimen to be moved over tens of micrometres over a period of several minutes with very low in-trap intensities. This non-invasive approach is foreseen to open new horizons in nanosciences by offering an unprecedented level of control of nanosized objects, including heat-sensitive biospecimens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical properties of BNAs.
Figure 2: SIBA trapping of a single 20 nm polystyrene bead in a planar geometry.
Figure 3: SIBA trapping at the extremity of a patterned tapered fibre under external illumination.
Figure 4: Three-dimensional manipulation of a single 50 nm polystyrene bead.

Similar content being viewed by others

References

  1. Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nature Nanotech. 8, 807–819 (2013).

    Article  Google Scholar 

  2. Novotny, L., Bian, R. & Xie, X. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).

    Article  CAS  Google Scholar 

  3. Martin, O. J. F. & Girard, C. Controlling and tuning strong optical field gradients at a local probe microscope tip apex. Appl. Phys. Lett. 70, 705–707 (1997).

    Article  Google Scholar 

  4. Chaumet, P., Rahmani, A. & Nieto-Vesperinas, M. Optical trapping and manipulation of nano-objects with an apertureless probe. Phys. Rev. Lett. 88, 123601 (2002).

    Article  Google Scholar 

  5. Hla, S-W. Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 23, 1351–1360 (2005).

    Article  CAS  Google Scholar 

  6. Kim, S., Shafiei, F., Ratchford, D. & Li, X. Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22, 115301 (2011).

    Article  Google Scholar 

  7. Decossas, S. et al. Nanomanipulation by atomic force microscopy of carbon nanotubes on a nanostructured surface. Surf. Sci. 543, 57–62 (2003).

    Article  CAS  Google Scholar 

  8. Betzig, E., Lewis, A., Harootunian, A., Isaacson, M. & Kratschmer, E. Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophys. J. 49, 269–279 (1986).

    Article  CAS  Google Scholar 

  9. Hecht, B. et al. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 112, 7761–7774 (2000).

    Article  CAS  Google Scholar 

  10. H'dhili, F., Bachelot, R., Lerondel, G., Barchiesi, D. & Royer, R. Near-field optics: direct observation of the field enhancement below an apertureless probe using a photosensitive polymer. Appl. Phys. Lett. 79, 4019–4021 (2001).

    Article  CAS  Google Scholar 

  11. Chaumet, P., Rahmani, A. & Nieto-Vesperinas, M. Photonic force spectroscopy on metallic and absorbing nanoparticles. Phys. Rev. B 71, 045425 (2005).

    Article  Google Scholar 

  12. Okamoto, K. & Kawata, S. Radiation force exerted on subwavelength particles near a nanoaperture. Phys. Rev. Lett. 83, 4534–4537 (1999).

    Article  CAS  Google Scholar 

  13. Ashkin, A., Dziedzic, J., Bjorkholm, J. & Chu, S. Observation of a single-beam gradient-force optical trap for dielectric particles in air. Opt. Lett. 22, 816–818 (1986).

    Google Scholar 

  14. Xin, H., Xu, R. & Li, B. Optical trapping, driving, and arrangement of particles using a tapered fibre probe. Sci. Rep. 2, 818 (2012).

    Article  Google Scholar 

  15. Liberale, C. et al. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nature Photon. 1, 723–727 (2007).

    Article  CAS  Google Scholar 

  16. Liu, Z., Guo, C., Yang, J. & Yuan, L. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Opt. Express 14, 12510–12516 (2006).

    Article  Google Scholar 

  17. Neumann, L. et al. Extraordinary optical transmission brightens near-field fiber probe. Nano Lett. 11, 355–360 (2011).

    Article  CAS  Google Scholar 

  18. Donner, J., Baffou, G., McCloskey, D. & Quidant, R. Plasmon-assisted optofluidics. ACS Nano 5, 5457–5462 (2011).

    Article  CAS  Google Scholar 

  19. Fang, Z. et al. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 13, 1736–1742 (2013).

    Article  CAS  Google Scholar 

  20. Righini, M. et al. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. Nano Lett. 9, 3387–3391 (2009).

    Article  CAS  Google Scholar 

  21. Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon. 2, 365–370 (2008).

    Article  CAS  Google Scholar 

  22. Juan, M. L., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photon. 5, 349–356 (2011).

    Article  CAS  Google Scholar 

  23. Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nature Phys. 5, 915–919 (2009).

    Article  CAS  Google Scholar 

  24. Pang, Y. & Gordon, R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett. 11, 3763–3767 (2011).

    Article  CAS  Google Scholar 

  25. Chen, C. et al. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. Nano Lett. 12, 125–132 (2012).

    Article  CAS  Google Scholar 

  26. Descharmes, N., Dharanipathy, U. P., Diao, Z., Tonin, M. & Houdré, R. Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity. Phys. Rev. Lett. 110, 123601 (2013).

    Article  Google Scholar 

  27. Kinzel, E. C. & Xu, X. Extraordinary infrared transmission through a periodic bowtie aperture array. Opt. Lett. 35, 992–994 (2010).

    Article  Google Scholar 

  28. Guo, H. et al. Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt. Express 16, 7756–7766 (2008).

    Article  Google Scholar 

  29. Jin, E. X. & Xu, X. Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture. Appl. Phys. B 84, 3–9 (2006).

    Article  CAS  Google Scholar 

  30. Mivelle, M., van Zanten, T. S., Neumann, L., van Hulst, N. F. & Garcia-Parajo, M. F. Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence. Nano Lett. 12, 5972–5978 (2012).

    Article  CAS  Google Scholar 

  31. Pang, Y. & Gordon, R. Optical trapping of a single protein. Nano Lett. 12, 402–406 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Spanish Ministry of Sciences (grants FIS2010– 14834), the European Community's Seventh Framework Programme (grant ERC-Plasmolight; no. 259196) and Fundació privada CELLEX. The authors thank M. Mivelle and M. García-Parajo for discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.B., M.L.J. and R.Q. conceived and designed the experiment. J.B. performed the experiments and analysed the data. S.S.A. performed the numerical simulations. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to R. Quidant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 595 kb)

Supplementary movie 1

Supplementary movie 1 (AVI 24922 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthelot, J., Aćimović, S., Juan, M. et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotech 9, 295–299 (2014). https://doi.org/10.1038/nnano.2014.24

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.24

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing