Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Universal control and error correction in multi-qubit spin registers in diamond

Subjects

This article has been updated

Abstract

Quantum registers of nuclear spins coupled to electron spins of individual solid-state defects are a promising platform for quantum information processing1,2,3,4,5,6,7,8,9,10,11,12,13. Pioneering experiments selected defects with favourably located nuclear spins with particularly strong hyperfine couplings4,5,6,7,8,9,10. To progress towards large-scale applications, larger and deterministically available nuclear registers are highly desirable. Here, we realize universal control over multi-qubit spin registers by harnessing abundant weakly coupled nuclear spins. We use the electron spin of a nitrogen–vacancy centre in diamond to selectively initialize, control and read out carbon-13 spins in the surrounding spin bath and construct high-fidelity single- and two-qubit gates. We exploit these new capabilities to implement a three-qubit quantum-error-correction protocol14,15,16,17 and demonstrate the robustness of the encoded state against applied errors. These results transform weakly coupled nuclear spins from a source of decoherence into a reliable resource, paving the way towards extended quantum networks and surface-code quantum computing based on multi-qubit nodes11,18,19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Definition and initialization of the quantum registers.
Figure 2: Individual nuclear spin control and readout.
Figure 3: Two-qubit control and nuclear–nuclear entangling gate.
Figure 4: Implementation of three-qubit quantum error correction.

Similar content being viewed by others

Change history

  • 07 February 2014

    In the version of this Letter originally published online, in Fig. 3b in one instance of RXπ/2, a subscript 'α' was used instead of a subscript 'X'. This error has now been corrected in all versions of the Letter.

References

  1. Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    Article  CAS  Google Scholar 

  2. Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    Article  CAS  Google Scholar 

  3. Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013).

    Article  CAS  Google Scholar 

  4. Gurudev Dutt, M. V. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  CAS  Google Scholar 

  5. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    Article  CAS  Google Scholar 

  6. Fuchs, G. D., Burkard, G., Klimov, P. V. & Awschalom, D. D. A quantum memory intrinsic to single nitrogen–vacancy centres in diamond. Nature Phys. 7, 789–793 (2011).

    Article  Google Scholar 

  7. Van der Sar, T. et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012).

    Article  CAS  Google Scholar 

  8. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  CAS  Google Scholar 

  9. Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid-state qubits. Nature Phys. 9, 29–33 (2013).

    Article  CAS  Google Scholar 

  10. Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    Article  CAS  Google Scholar 

  11. Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nature Phys. 9, 139–143 (2013).

    Article  CAS  Google Scholar 

  12. Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

    Article  CAS  Google Scholar 

  13. Lee, S-Y. et al. Readout and control of a single nuclear spin with a metastable electron spin ancilla. Nature Nanotech. 8, 487–492 (2013).

    Article  CAS  Google Scholar 

  14. Cory, D. G. et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998).

    Article  CAS  Google Scholar 

  15. Moussa, O., Baugh, J., Ryan, C. A. & Laflamme, R. Demonstration of sufficient control for two rounds of quantum error correction in a solid state ensemble quantum information processor. Phys. Rev. Lett. 107, 160501 (2011).

    Article  Google Scholar 

  16. Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).

    Article  CAS  Google Scholar 

  17. Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).

    Article  CAS  Google Scholar 

  18. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  CAS  Google Scholar 

  19. Nickerson, N. H., Li, Y. & Benjamin, S. C. Topological quantum computing with a very noisy network and local error rates approaching one percent. Nature Commun. 4, 1756 (2013).

    Article  Google Scholar 

  20. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    Article  CAS  Google Scholar 

  21. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  CAS  Google Scholar 

  22. Dreau, A., Spinicelli, P., Maze, J. R., Roch, J. F. & Jacques, V. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions. Phys. Rev. Lett. 110, 060502 (2013).

    Article  CAS  Google Scholar 

  23. Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    Article  CAS  Google Scholar 

  24. Kolkowitz, S., Unterreithmeier, Q. P., Bennett, S. D. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).

    Article  Google Scholar 

  25. Zhao, N. et al. Sensing single remote nuclear spins. Nature Nanotech. 7, 657–662 (2012).

    Article  CAS  Google Scholar 

  26. Hodges, J. S., Yang, J. C., Ramanathan, C. & Cory, D. G. Universal control of nuclear spins via anisotropic hyperfine interactions. Phys. Rev. A 78, 010303 (2008).

    Article  Google Scholar 

  27. Zhang, Y., Ryan, C. A., Laflamme, R. & Baugh, J. Coherent control of two nuclear spins using the anisotropic hyperfine interaction. Phys. Rev. Lett. 107, 170503 (2011).

    Article  Google Scholar 

  28. Maze, J. R., Taylor, J. M. & Lukin, M. D. Electron spin decoherence of single nitrogen–vacancy defects in diamond. Phys. Rev. B 78, 094303 (2008).

    Article  Google Scholar 

  29. London, P. et al. Detecting and polarizing nuclear spins with double resonance on a single electron spin. Phys. Rev. Lett. 111, 067601 (2013).

    Article  CAS  Google Scholar 

  30. Filidou, V. et al. Ultrafast entangling gates between nuclear spins using photoexcited triplet states. Nature Phys. 8, 596–600 (2012).

    Article  CAS  Google Scholar 

  31. Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nature Commun. 4, 1743 (2013).

    Article  CAS  Google Scholar 

  32. Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Preprint at http://arxiv.org/abs/1309.6424 (2013).

Download references

Acknowledgements

The authors thank L. Childress, J.J.L. Morton, O. Moussa and L.M.K. Vandersypen for discussions and comments. T.H.T. acknowledges support from a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme. Work at the Ames Laboratory was supported by the US Department of Energy Basic Energy Sciences (contract no. DE- AC02-07CH11358). The authors acknowledge support from the Dutch Organization for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), the DARPA QuASAR programme, the EU SOLID and DIAMANT programmes, and the European Research Council through a Starting Grant.

Author information

Authors and Affiliations

Authors

Contributions

V.V.D., T.H.T., T.v.d.S. and R.H. conceived the control method. T.H.T., J.C., T.v.d.S. and R.H. devised the experiments. T.H.T., J.C. and T.v.d.S. performed the measurements and processed the data. T.H.T. and R.H. wrote the manuscript. All authors analysed the results and commented on the manuscript.

Corresponding author

Correspondence to R. Hanson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1530 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taminiau, T., Cramer, J., van der Sar, T. et al. Universal control and error correction in multi-qubit spin registers in diamond. Nature Nanotech 9, 171–176 (2014). https://doi.org/10.1038/nnano.2014.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing