Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system

Abstract

Recent progress in nanotechnology has allowed the fabrication of new hybrid systems in which a single two-level system is coupled to a mechanical nanoresonator1,2,3,4,5,6,7,8,9. In such systems the quantum nature of a macroscopic degree of freedom can be revealed and manipulated10. This opens up appealing perspectives for quantum information technologies11, and for the exploration of the quantum–classical boundary. Here we present the experimental realization of a monolithic solid-state hybrid system governed by material strain12: a quantum dot is embedded within a nanowire that features discrete mechanical resonances corresponding to flexural vibration modes. Mechanical vibrations result in a time-varying strain field that modulates the quantum dot transition energy. This approach simultaneously offers a large light-extraction efficiency13,14 and a large exciton–phonon coupling strength g0. By means of optical and mechanical spectroscopy, we find that g0/2π is nearly as large as the mechanical frequency, a criterion that defines the ultrastrong coupling regime15.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hybrid system and experimental set-up.
Figure 2: Nanowire mechanical properties.
Figure 3: Characterization of the hybrid coupling.

Similar content being viewed by others

References

  1. Treutlein, P., Genes, C., Hammerer, K., Poggio, M. & Rabl, P. Hybrid mechanical systems. Preprint at http://arXiv.org/abs/1210.4151 (2013).

  2. LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

    Article  CAS  Google Scholar 

  3. Hammerer, K. et al. Strong coupling of a mechanical oscillator and a single atom. Phys. Rev. Lett. 103, 063005 (2009).

    Article  CAS  Google Scholar 

  4. Rabl, R. et al. Strong magnetic coupling between an electronic spin qubit and a mechanical oscillator. Phys. Rev. B 79, 041302 (2009).

    Article  Google Scholar 

  5. Hunger, D. et al. Resonant coupling of a Bose–Einstein condensate to a micromechanical oscillator. Phys. Rev. Lett. 104, 143002 (2010).

    Article  Google Scholar 

  6. Bennett, S. D., Cockins, L., Miyahara, Y., Grütter, P. & Clerk, A. A. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot. Phys. Rev. Lett. 104, 017203 (2010).

    Article  Google Scholar 

  7. Arcizet, O. et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nature Phys. 7, 879–883 (2011).

    Article  CAS  Google Scholar 

  8. Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).

    Article  CAS  Google Scholar 

  9. Pirkkalainen, J. M. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494, 211–215 (2013).

    Article  CAS  Google Scholar 

  10. O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  CAS  Google Scholar 

  11. Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W. & Lehnert, K. W. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013).

    Article  CAS  Google Scholar 

  12. Wilson-Rae, I., Zoller, P. & Imamoğlu, A. Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004).

    Article  CAS  Google Scholar 

  13. Munsch, M. et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013).

    Article  Google Scholar 

  14. Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics 4, 174–177 (2010).

    Article  CAS  Google Scholar 

  15. Armour, A. D., Blencowe, M. P. & Schwab, K. C. Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. Phys. Rev. Lett. 88, 148301 (2002).

    Article  CAS  Google Scholar 

  16. Kabuss, J., Carmele, A., Brandes, T. & Knorr, A. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme. Phys. Rev. Lett. 109, 054301 (2012).

    Article  Google Scholar 

  17. Etaki, S. et al. Motion detection of a micromechanical resonator embedded in a d.c. SQUID. Nature Phys. 4, 785–788 (2008).

    Article  CAS  Google Scholar 

  18. Jöns, K. D. et al. Dependence of the redshifted and blueshifted photoluminescence spectra of single InxGa1– xAs/GaAs quantum dots on the applied uniaxial stress. Phys. Rev. Lett. 107, 217402 (2011).

    Article  Google Scholar 

  19. Bryant, G. W. et al. Controlling the optics of quantum dots with nanomechanical strain. Phys. Rev. B 84, 235412 (2011).

    Article  Google Scholar 

  20. Arcizet, O., Rivière, R., Schliesser, A., Anetsberger, G. & Kippenberg, T. J. Cryogenic properties of optomechanical silica microcavities. Phys. Rev. A 80, 021803R (2009).

    Article  Google Scholar 

  21. Auffèves, A. & Richard, M. Mechanical motion excited by a light-controlled quantum hammer. Preprint at http://arXiv.org/abs/1305.4252 (2013).

  22. Bleuse, J. et al. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett. 106, 103601 (2011).

    Article  Google Scholar 

  23. McFarlane, J. et al. Gigahertz bandwidth electrical control over a dark exciton-based memory bit in a single quantum dot. Appl. Phys. Lett. 94, 093113 (2009).

    Article  Google Scholar 

  24. Greilich, A. et al. Mode locking of electron spin coherences in singly charged quantum dots. Science, 313, 341–345 (2006).

    Article  CAS  Google Scholar 

  25. Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotechnol 5, 195 (2010).

    Article  CAS  Google Scholar 

  26. Batalov, A. et al. Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. Phys. Rev. Lett. 102, 195506 (2009).

    Article  CAS  Google Scholar 

  27. Stannigel, K., Rabl, P., Sørensen, A. S., Zoller, P. & Lukin, M. D. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010).

    Article  CAS  Google Scholar 

  28. Usami, K. et al. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane, Nature Phys. 8, 168–172 (2012).

    Article  CAS  Google Scholar 

  29. Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J. & Painter, O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009).

    Article  CAS  Google Scholar 

  30. Gavartin, E. et al. Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys. Rev. Lett. 106, 203902 (2011).

    Article  CAS  Google Scholar 

  31. Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G., & Kippenberg, T. J. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys. 5, 509–514 (2009).

    Article  CAS  Google Scholar 

  32. Ding, L. et al. High frequency GaAs nano-optomechanical disk resonator. Phys. Rev. Lett. 105, 263903 (2010).

    Article  Google Scholar 

  33. Yeo, I. et al. Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot. Appl. Phys. Lett. 99, 233106 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

O.A. acknowledges funding from Agence Nationale de la Recherche (RPDC2010) and the European Research Council (ERC Starting Grant ‘HQNOM’), A.A., J-P.P., J.C., J-M.G. and P-L.A. acknowledge funding from Agence Nationale de la Recherche (WIFO) and M.R. acknowledges the European Research Council (ERC starting grant ‘Handy-Q’). We thank E. Wagner and D. Lepoittevin for technical support. The sample was realized in the Plateforme Technologique Amont and CEA LETI/DOPT/SIONA clean rooms.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this work.

Corresponding author

Correspondence to J-Ph. Poizat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1858 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, I., de Assis, PL., Gloppe, A. et al. Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nature Nanotech 9, 106–110 (2014). https://doi.org/10.1038/nnano.2013.274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing