Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

Subjects

An Erratum to this article was published on 06 January 2015

This article has been updated

Abstract

There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation and characterization of SQAd nanoassemblies (NAs).
Figure 2: Systemic administration of SQAd nanoassemblies (NAs) provides significant neuroprotection in a mouse model of cerebral ischaemia.
Figure 3: Pharmacological efficiency of the SQAd nanoassemblies (NAs) in a model of spinal cord injury in rats.
Figure 4: Absence of side effects and systemic toxicity following intravenous injection of SQAd nanoassemblies (NAs).
Figure 5: SQAd nanoassemblies (NAs) are a reservoir of adenosine in the systemic circulation.
Figure 6: Internalization of the SQAd nanoassemblies (NAs) by human cerebral endothelial cells (hCMEC/D3).

Similar content being viewed by others

Change history

  • 03 December 2014

    In the version of this Article originally published, the affiliations of Hakan Eroglu, Omer Faruk Turkoglu, Seçil Caban, Oya Tagit, Niko Hildebrandt and Yilmaz Capan were incorrect. This error has now been corrected in the online versions of the Article.

References

  1. Profyris, C. et al. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol. Dis. 15, 415–436 (2004).

    Article  Google Scholar 

  2. Pardridge, W. M. Non-invasive drug delivery to the human brain using endogenous blood–brain barrier transport systems. Pharm. Sci. Technol. Today 2, 49–59 (1999).

    Article  CAS  Google Scholar 

  3. Palmer, A. M. & Alavijeh, M. S. Translational CNS medicines research. Drug. Discov. Today 17, 1068–1078 (2012).

    Article  CAS  Google Scholar 

  4. Pangalos, M. N., Schechter, L. E. & Hurko, O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nature Rev. Drug Discov. 6, 521–532 (2007).

    Article  CAS  Google Scholar 

  5. Zhang, L., Zhang, Z. G. & Chopp, M. The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol. Sci. 33, 415–422 (2012).

    Article  CAS  Google Scholar 

  6. Andrieux, K. & Couvreur, P. Polyalkylcyanoacrylate nanoparticles for delivery of drugs across the blood–brain barrier. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 463–474 (2009).

    Article  CAS  Google Scholar 

  7. Nair, S. B., Dileep, A. & Rajanikant, G. K. Nanotechnology based diagnostic and therapeutic strategies for neuroscience with special emphasis on ischemic stroke. Curr. Med. Chem. 19, 744–756 (2012).

    Article  CAS  Google Scholar 

  8. Sun, Q., Radosz, M. & Shen, Y. Challenges in design of translational nanocarriers. J. Control Rel. 164, 156–169 (2012).

    Article  CAS  Google Scholar 

  9. Yang, H. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm. Res. 27, 1759–1771 (2010).

    Article  CAS  Google Scholar 

  10. Boison, D. Adenosine as a neuromodulator in neurological diseases. Curr. Opin. Pharmacol. 8, 2–7 (2008).

    Article  CAS  Google Scholar 

  11. De Mendonca, A., Sebastiao, A. M. & Ribeiro, J. A. Adenosine: does it have a neuroprotective role after all? Brain Res. Rev. 33, 258–274 (2000).

    Article  CAS  Google Scholar 

  12. Williams-Karnesky, R. L. & Stenzel-Poore, M. P. Adenosine and stroke: maximizing the therapeutic potential of adenosine as a prophylactic and acute neuroprotectant. Curr. Neuropharmacol. 7, 217–227 (2009).

    Article  CAS  Google Scholar 

  13. Fredholm, B. B., Chen, J. F., Cunha, R. A., Svenningsson, P. & Vaugeois, J. M. Adenosine and brain function. Int. Rev. Neurobiol. 63, 191–270 (2005).

    Article  CAS  Google Scholar 

  14. Gomes, C. V., Kaster, M. P., Tome, A. R., Agostinho, P. M. & Cunha, R. A. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim. Biophys. Acta 1808, 1380–1399 (2011).

    Article  CAS  Google Scholar 

  15. Moser, G. H., Schrader, J. & Deussen, A. Turnover of adenosine in plasma of human and dog blood. Am. J. Physiol. 256, C799–C806 (1989).

    Article  CAS  Google Scholar 

  16. Cerqueira, M. D., Verani, M. S., Schwaiger, M., Heo, J. & Iskandrian, A. S. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan Multicenter Trial Registry. J. Am. Coll. Cardiol. 23, 384–389 (1994).

    Article  CAS  Google Scholar 

  17. Levine, A. S. & Morley, J. E. Purinergic regulation of food intake. Science 217, 77–79 (1982).

    Article  CAS  Google Scholar 

  18. Basheer, R., Strecker, R. E., Thakkar, M. M. & McCarley, R. W. Adenosine and sleep–wake regulation. Prog. Neurobiol. 73, 379–396 (2004).

    Article  CAS  Google Scholar 

  19. Pardridge, W. M., Yoshikawa, T., Kang, Y. S. & Miller, L. P. Blood–brain barrier transport and brain metabolism of adenosine and adenosine analogs. J. Pharmacol. Exp. Ther. 268, 14–18 (1994).

    CAS  Google Scholar 

  20. Isakovic, A. J., Abbott, N. J. & Redzic, Z. B. Brain to blood efflux transport of adenosine: blood–brain barrier studies in the rat. J. Neurochem. 90, 272–286 (2004).

    Article  CAS  Google Scholar 

  21. Couvreur, P. et al. Squalenoyl nanomedicines as potential therapeutics. Nano Lett. 6, 2544–2548 (2006).

    Article  CAS  Google Scholar 

  22. Reddy, L. H. et al. Preclinical toxicology (subacute and acute) and efficacy of a new squalenoyl gemcitabine anticancer nanomedicine. J. Pharmacol. Exp. Ther. 325, 484–490 (2008).

    Article  CAS  Google Scholar 

  23. Hillaireau, H. et al. Anti-HIV efficacy and biodistribution of nucleoside reverse transcriptase inhibitors delivered as squalenoylated prodrug nanoassemblies. Biomaterials 34, 4831–4838 (2013).

    Article  CAS  Google Scholar 

  24. Bisgaier, C. L., Minton, L. L., Essenburg, A. D., White, A. & Homan, R. Use of fluorescent cholesteryl ester microemulsions in cholesteryl ester transfer protein assays. J. Lipid Res. 34, 1625–1634 (1993).

    CAS  Google Scholar 

  25. Kitagawa, H., Mori, A., Shimada, J., Mitsumoto, Y. & Kikuchi, T. Intracerebral adenosine infusion improves neurological outcome after transient focal ischemia in rats. Neurol. Res. 24, 317–323 (2002).

    Article  CAS  Google Scholar 

  26. Tatlisumak, T. et al. Delayed treatment with an adenosine kinase inhibitor, GP683, attenuates infarct size in rats with temporary middle cerebral artery occlusion. Stroke 29, 1952–1958 (1998).

    Article  CAS  Google Scholar 

  27. Pignataro, G., Simon, R. P. & Boison, D. Transgenic overexpression of adenosine kinase aggravates cell death in ischemia. J. Cereb. Blood Flow Metab. 27, 1–5 (2007).

    Article  CAS  Google Scholar 

  28. Von Lubitz, D. K. Adenosine and cerebral ischemia: therapeutic future or death of a brave concept? Eur. J. Pharmacol. 371, 85–102 (1999).

    Article  CAS  Google Scholar 

  29. Echavarria-Pinto, M. et al. Low coronary microcirculatory resistance associated with profound hypotension during intravenous adenosine infusion: implications for the functional assessment of coronary stenoses. Circ. Cardiovasc. Interv. 7, 35–42 (2014).

    Article  CAS  Google Scholar 

  30. Go, A. S. et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129, e28–e292 (2014).

    Article  Google Scholar 

  31. Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nature Med. 15, 1031–1037 (2009).

    Article  CAS  Google Scholar 

  32. Hamilton, N. B., Attwell, D. & Hall, C. N. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenerg. 2, 1–14 (2010).

    Article  Google Scholar 

  33. Li, S. et al. Intracellular ATP concentration contributes to the cytotoxic and cytoprotective effects of adenosine. PLoS ONE 8, e76731 (2013).

    Article  CAS  Google Scholar 

  34. Paterniti, I. et al. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects. J. Neuroinflam. 8, 31 (2011).

    Article  CAS  Google Scholar 

  35. Okonkwo, D. O. et al. A comparison of adenosine A2A agonism and methylprednisolone in attenuating neuronal damage and improving functional outcome after experimental traumatic spinal cord injury in rabbits. J. Neurosurg. Spine 4, 64–70 (2006).

    Article  Google Scholar 

  36. Kwon, B. K., Hillyer, J. & Tetzlaff, W. Translational research in spinal cord injury: a survey of opinion from the SCI community. J. Neurotrauma 27, 21–33 (2010).

    Article  Google Scholar 

  37. Basso, D. M., Beattie, M. S. & Bresnahan, J. C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp. Neurol. 139, 244–256 (1996).

    Article  CAS  Google Scholar 

  38. Shi, Y. et al. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. Nature Nanotech. 5, 80–87 (2010).

    Article  CAS  Google Scholar 

  39. Alavijeh, M. S. & Palmer, A. M. Measurement of the pharmacokinetics and pharmacodynamics of neuroactive compounds. Neurobiol. Dis. 37, 38–47 (2010).

    Article  CAS  Google Scholar 

  40. Levine, A. S. & Morley, J. E. Effect of intraventricular adenosine on food intake in rats. Pharmacol. Biochem. Behav. 19, 23–26 (1983).

    Article  CAS  Google Scholar 

  41. Portas, C. M., Thakkar, M., Rainnie, D. G., Greene, R. W. & McCarley, R. W. Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 79, 225–235 (1997).

    Article  CAS  Google Scholar 

  42. Porkka-Heiskanen, T., Alanko, L., Kalinchuk, A. & Stenberg, D. Adenosine and sleep. Sleep Med. Rev. 6, 321–332 (2002).

    Article  Google Scholar 

  43. Melani, A., Corti, F., Cellai, L., Giuliana Vannucchi, M. & Pedata, F. Low doses of the selective adenosine A2A receptor agonist CGS21680 are protective in a rat model of transient cerebral ischemia. Brain Res. 1551, 59–72 (2014).

    Article  CAS  Google Scholar 

  44. Poller, B. et al. The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J. Neurochem. 107, 1358–1368 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Research Council (allocated to P.C.), under the European Community's Seventh Framework Programme FP7/2007-2013 (grant agreement no. 249835). A.G. is supported by a NerF-ENP fellowship provided by the Région Ile-de-France. T.D.'s work is supported by the Turkish Academy of Sciences. M.Y. is supported by a limited grant by L'Oréal, Turkey. H.E. has been supported by the Hacettepe University Scientific Research Project (project no. 013D04301002). O.T. is supported by the European Union Seventh Framework Programme FP7/2007-2013 (grant agreement no. 246556). The authors thank D. Sobot (Institut Galien Paris-Sud XI) for help with flow cytometry experiments, O. Bawa and P. Opolon (Institut Gustave Roussy) for analysis of the morphology on stained slides, M. Wittner (Institut Gustave Roussy) for the haematology study, S. Beurlet (VEBIO Lab) for biochemical dosages and M. Parrod (Bertin PHARMA) for the radio-HPLC analysis.

Author information

Authors and Affiliations

Authors

Contributions

P.C. and T.D. conceived and designed the research. A.G. designed and performed the nanoparticle preparation, the side effects and toxicity experiments, the stability and in vivo pharmacokinetic/biodistribution studies and the in vitro experiments. S.L. developed and performed the SQAd synthesis, D.D. helped with analysing the chemical results. B.R., S.G.A., G.P. and O.L. developed and performed the radiolabelled compound synthesis. T.D. and M.Y. designed and performed the cerebral ischaemia experiments. B.D-D. performed the histological stainings and countings for cerebral ischaemia experiments. S.C. and Y.C. were in charge of nanoparticle preparation for the cerebral ischaemia experiments. H.E., O.F.T. and A.G. designed and performed the spinal cord injury experiments. M.F.Z. performed the ultrastructural evaluation of the spinal cord injury experiments. A.G., O.T. and N.H designed and performed the FRET nanoassemblies experiments. Y.L.D and A.G. performed the sleep cycle experiments. J.M. performed the HPLC analysis. S.V. performed the complement activation experiments. H.C. helped to analyse the radioactivity data and V.N. helped to analyse the confocal data. P.C., T.D., K.A., A.G. and M.Y. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Karine Andrieux or Patrick Couvreur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1722 kb)

Supplementary information

Supplementary Movie 1 (AVI 37615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudin, A., Yemisci, M., Eroglu, H. et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nature Nanotech 9, 1054–1062 (2014). https://doi.org/10.1038/nnano.2014.274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing