Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Single-molecule junctions

Thermoelectricity at the gate

A Correction to this article was published on 03 December 2014

This article has been updated

The electrical conductance and the Seebeck coefficient of molecular junction devices can be simultaneously enhanced using a gate electrode.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Working principle of a three-terminal molecular junction.

Change history

  • 12 November 2014

    In the version of this News & Views article previously published, the definition of the figure of merit was incorrect: it should have read ‘ZT = S2GT/κ’. Corrected after print 12 November 2014.

References

  1. US Department of Energy, Industrial Technologies Program & Energy Efficiency and Renewable Energy Waste Heat Recovery: Technology and Opportunities in U. S. Industry (Prepared by BCS, 2008); available via http://go.nature.com/G73U2a

  2. Kim, Y., Jeong, W., Kim, K., Lee, W. & Reddy, P. Nature Nanotech. 9, 881–885 (2014).

    Article  Google Scholar 

  3. Hicks, L. D. & Dresselhaus, M. S. Phys. Rev. B 47, 12727–12731 (1993).

    Article  CAS  Google Scholar 

  4. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  5. Heremans, J. P. et al. Phys. Rev. Lett. 88, 216801 (2002).

    Article  Google Scholar 

  6. Reddy, P., Jang, S. Y., Segalman, R. A. & Majumdar, A. Science 315, 1568–1571 (2007).

    Article  CAS  Google Scholar 

  7. Widawsky, J. R., Darancet, P., Neaton, J. B. & Venkataraman, L. Nano Lett. 12, 354–358 (2012).

    Article  CAS  Google Scholar 

  8. Finch, C. M., García-Suárez, V. M. & Lambert, C. J. Phys. Rev. B 79, 033405 (2009).

    Article  Google Scholar 

  9. Bergfield, J. P., Solis, M. A. & Stafford, C. A. ACS Nano 4, 5314–5320 (2010).

    Article  CAS  Google Scholar 

  10. Karlström, O., Linke, H., Karlström, G. & Wacker, A. Phys. Rev. B 84, 113415 (2011).

    Article  Google Scholar 

  11. Paulsson, M. & Datta, S. Phys. Rev. B 67, 241403(R) (2003).

    Article  Google Scholar 

  12. Widawsky, J. R. et al. Nano Lett. 13, 2889–2894 (2013).

    Article  CAS  Google Scholar 

  13. Kim, T. et al. Nano Lett. 14, 794–798 (2014).

    Article  CAS  Google Scholar 

  14. Lee, W. et al. Nature 498, 209–212 (2013).

    Article  CAS  Google Scholar 

  15. Dubi, Y. & Di Ventra, M. Rev. Mod. Phys. 83, 131–155 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey B. Neaton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neaton, J. Thermoelectricity at the gate. Nature Nanotech 9, 876–877 (2014). https://doi.org/10.1038/nnano.2014.256

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing