Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flow-based solution–liquid–solid nanowire synthesis

Abstract

Discovered almost two decades ago, the solution–liquid–solid (SLS) method for semiconductor nanowire synthesis has proven to be an important route to high-quality, single-crystalline anisotropic nanomaterials. In execution, the SLS technique is similar to colloidal quantum-dot synthesis in that it entails the injection of chemical precursors into a hot surfactant solution, but mechanistically it is considered the solution-phase analogue to vapour–liquid–solid (VLS) growth. Both SLS and VLS methods make use of molten metal nanoparticles to catalyse the nucleation and elongation of single-crystalline nanowires. Significantly, however, the methods differ in how chemical precursors are introduced to the metal catalysts. In SLS, precursors are added in a one-off fashion in a flask, whereas in VLS they are carried by a flow of gas through the reaction chamber, and by-products are removed similarly. The ability to dynamically control the introduction of reactants and removal of by-products in VLS synthesis has enabled a degree of synthetic control not possible with SLS growth. We show here that SLS synthesis can be transformed into a continuous technique using a microfluidic reactor. The resulting flow-based SLS (‘flow-SLS’) platform allows us to slow down the synthesis of nanowires and capture mechanistic details concerning their growth in the solution phase, as well as synthesize technologically relevant axially heterostructured semiconductor nanowires, while maintaining the propensity of SLS for accessing ultrasmall diameters below 10 nm.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow-SLS growth.
Figure 2: Dependence of CdSe semiconductor nanowire dimensions on growth time and reaction temperature.
Figure 3: Integrated analysis of semiconductor nanowire length dependencies on diameter and time with implications for flow-SLS reaction kinetics.
Figure 4: Effect of increasing reactant flow rate on semiconductor nanowire diameter and enhanced supersaturation enabling access to the small-diameter regime.
Figure 5: Eight-segment CdSe–ZnSe semiconductor nanowire synthesized by flow-SLS.

References

  1. Trentler, T. J. et al. Solution–liquid–solid growth of crystalline III–V semiconductors: an analogy to vapor–liquid–solid growth. Science 270, 1791–1794 (1995).

    Article  CAS  Google Scholar 

  2. Wang, F. et al. Solution–liquid–solid growth of semiconductor nanowires. Inorg. Chem. 45, 7511–7521 (2006).

    Article  CAS  Google Scholar 

  3. Kuno, M. An overview of solution-based semiconductor nanowires: synthesis and optical studies. Phys. Chem. Chem. Phys. 10, 620–639 (2008).

    Article  CAS  Google Scholar 

  4. Sun, J., Liu, C. & Yang, P. Surfactant-free, large-scale, solution–liquid–solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J. Am. Chem. Soc. 133, 19306–19309 (2011).

    Article  CAS  Google Scholar 

  5. Dong, A., Yu, H., Wang, F. & Buhro, W. E. Colloidal GaAs quantum wires: solution–liquid–solid synthesis and quantum-confinement studies. J. Am. Chem. Soc. 130, 5954–5961 (2008).

    Article  CAS  Google Scholar 

  6. Li, Z., Kornowski, A., Myalitsin, A. & Mews, A. Formation and function of bismuth nanocatalysts for the solution–liquid–solid synthesis of CdSe nanowires. Small 4, 1698–1702 (2008).

    Article  CAS  Google Scholar 

  7. Dong, A., Wang, F., Daulton, T. L. & Buhro, W. E. Solution–liquid–solid (SLS) growth of ZnSe–ZnTe quantum wires having axial heterojunctions. Nano Lett. 7, 1308–1313 (2007).

    Article  CAS  Google Scholar 

  8. Sun, J. & Buhro, W. E. The use of single-source precursors for the solution–liquid–solid growth of metal sulfide semiconductor nanowires. Angew. Chem. Int. Ed. 120, 3259–3262 (2008).

    Article  Google Scholar 

  9. Hull, K. L., Grebinski, J. W., Kosel, T. H. & Kuno, M. Induced branching in confined PbSe nanowires. Chem. Mater. 17, 4416–4425 (2005).

    Article  CAS  Google Scholar 

  10. Onicha, A. C., Petchsang, N., Kosel, T. H. & Kuno, M. Controlled synthesis of compositionally tunable ternary PbSe(x)S(1–x) as well as binary PbSe and PbS nanowires. ACS Nano 6, 2833–2843 (2012).

    Article  CAS  Google Scholar 

  11. Lu, X., Fanfair, D. D., Johnston, K. P. & Korgel, B. A. High yield solution–liquid–solid synthesis of germanium nanowires. J. Am. Chem. Soc. 127, 15718–15719 (2005).

    Article  CAS  Google Scholar 

  12. Heitsch, A. T., Fanfair, D. D., Tuan, H-Y. & Korgel, B. A. Solution–liquid–solid (SLS) growth of silicon nanowires. J. Am. Chem. Soc. 130, 5436–5437 (2008).

    Article  CAS  Google Scholar 

  13. Wooten, A. J., Werder, D. J., Williams, D. J., Casson, J. L. & Hollingsworth, J. A. Solution–liquid–solid growth of ternary Cu–In–Se semiconductor nanowires from multiple- and single-source precursors. J. Am. Chem. Soc. 131, 16177–16188 (2009).

    Article  CAS  Google Scholar 

  14. Dong, A., Tang, R. & Buhro, W. E. Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires. J. Am. Chem. Soc. 129, 12254–12262 (2007).

    Article  CAS  Google Scholar 

  15. Goebl, J. A. et al. Solution-based II–VI core/shell nanowire heterostructures. J. Am. Chem. Soc. 130, 14822–14833 (2008).

    Article  CAS  Google Scholar 

  16. Petchang, N. et al. Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires. Nanoscale 3, 3145–3151 (2011).

    Article  Google Scholar 

  17. Liu, Y. H. et al. Bright core–shell semiconductor quantum wires. J. Am. Chem. Soc. 134, 18797–18803 (2012).

    Article  CAS  Google Scholar 

  18. Li, Z. et al. Diluted magnetic semiconductor nanowires prepared by the solution–liquid–solid method. Angew. Chem. Int. Ed. 122, 2837–2841 (2010).

    Article  Google Scholar 

  19. Hang, Q., Wang, F., Buhro, W. E. & Janes, D. B. Ambipolar conduction in transistors using solution grown InAs nanowires with Cd doping. Appl. Phys. Lett. 90, 062108 (2007).

    Article  Google Scholar 

  20. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  21. Li, Z. et al. Controlled synthesis of CdSe nanowires by solution–liquid–solid method Adv. Funct. Mater. 19, 3650–3661 (2009).

    Article  CAS  Google Scholar 

  22. Lu, X., Hanrath, T., Johnston, K. P. & Korgel, B. A. Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate. Nano Lett. 3, 93–99 (2003).

    Article  CAS  Google Scholar 

  23. Ouyang, L., Maher, K. N., Yu, C. L., McCarty, J. & Park, H. Catalyst-assisted solution–liquid–solid synthesis of CdS/CdSe nanorod heterostructures J. Am. Chem. Soc. 129, 133–138 (2007).

    Article  CAS  Google Scholar 

  24. Persson, A. I. et al. InAs1– xPx nanowires for device engineering. Nano Lett. 6, 403–407 (2006).

    Article  CAS  Google Scholar 

  25. Yen, B. K. H., Stott, N. E., Jensen, K. F. & Bawendi, M. G. A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv. Mater. 15, 1858–1862 (2003).

    Article  CAS  Google Scholar 

  26. Chan, E. M., Mathies, R. A. & Alivisatos, A. P. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett. 3, 199–201 (2003).

    Article  CAS  Google Scholar 

  27. Nightingale, A. M. & de Mello, J. C. Controlled synthesis of III–V quantum dots in microfluidic reactors. ChemPhysChem 10, 2612–2614 (2009).

    Article  CAS  Google Scholar 

  28. Dayeh, S. A., Yu, E. T. & Wang, D. Surface diffusion and substrate–nanowire adatom exchange in InAs nanowire growth. Nano Lett. 9, 1967–1972 (2009).

    Article  CAS  Google Scholar 

  29. Sharma, S., Kamins, T. I. & Williams, R. S. Diameter control of Ti-catalysed silicon nanowires. J. Cryst. Growth 267, 613–618 (2004).

    Article  CAS  Google Scholar 

  30. Nagashima, K., Yanagida, T., Oka, K., Tanaka, H. & Kawai, T. Mechanism and control of sidewall growth and catalyst diffusion on oxide nanowire vapor–liquid–solid growth. Appl. Phys. Lett. 93, 153103 (2008).

    Article  Google Scholar 

  31. Wang, J. et al. Position-controlled [100] InP nanowire array. Appl. Phys. Lett. 100, 053107 (2012).

    Article  Google Scholar 

  32. Lee, J. S., Brittman, S., Yu, D. & Park, H. Vapor–liquid–solid and vapor–solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures. J. Am. Chem. Soc. 130, 6252–6258 (2008).

    Article  CAS  Google Scholar 

  33. Givargizov, E. I. in Highly Anisotropic Crystals Ch. 2, 100–112 (Springer, 1987).

  34. Dubrovskii, V. G. et al. Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: theory and experiment. Phys. Rev. B 71, 205325 (2005).

  35. Moewe, M., Chuang, L. C., Dubrovskii, V. G. & Chang-Hasnain, C. Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates. J. Appl. Phys. 104, 044313 (2008).

    Article  Google Scholar 

  36. Dubrovskii, V. G. et al. Gibbs–Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires. Phys. Rev. B 79, 205316 (2009).

  37. Fröberg, L. E., Seifert, W. & Johansson, J. Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B 76, 153401 (2007).

    Article  Google Scholar 

  38. Yeh, C-Y., Lu, Z. W., Froyen, S. & Zunger, A. Zinc-blende–wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 (1992).

    Article  CAS  Google Scholar 

  39. Dayeh, S. A. & Picraux, S. T. Direct observation of nanoscale size effects in Ge semiconductor nanowire growth. Nano Lett. 10, 4032–4039 (2010).

    Article  CAS  Google Scholar 

  40. Borg, B. M. et al. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett. 10, 4080–4085 (2010).

    Article  CAS  Google Scholar 

  41. Caroff, P. et al. Controlled polytypic and twin-plane superlattices in III–V nanowires. Nature Nanotech. 4, 50–55 (2009).

    Article  CAS  Google Scholar 

  42. Tian, B., Xie, P., Kempa, T. J., Bell, D. C. & Lieber, C. M. Single crystalline kinked semiconductor nanowire superstructures. Nature Nanotech. 4, 824–829 (2009).

    Article  CAS  Google Scholar 

  43. Grebinski, J. W., Hull, K. L., Zhang, J., Kosel, T. H. & Kuno, M. Solution-based straight and branched CdSe nanowires. Chem. Mater. 16, 5260–5272 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.L. was supported by a Los Alamos National Laboratory (LANL) Laboratory Directed Research and Development (LDRD) Program's Director's Postdoctoral Research Fellowship. R.L. is currently supported by the National Science and Technology Development Agency of Thailand (NSTDA), through which some of the data analysis was completed. K.P. was supported in part by LANL Center for Integrated Nanotechnologies (CINT) postdoctoral funding. N.A.S., R.M.D., D.J.W. and J.A.H. acknowledge support from the LANL LDRD programme. J.K.B. was funded by LANL CINT. This work was performed in large part at CINT, a US Department of Energy (DOE) Office of Science Nanoscale Science Research Center and User Facility. LANL, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Contributions

J.A.H. conceived the concept of ‘flow-SLS’. N.A.S. and J.A.H. designed the flow-SLS chip in collaboration with the subcontractor (Dolomite). N.A.S. performed the initial flow-SLS semiconductor nanowire syntheses, and R.L. and K.P. performed the syntheses reported here, under the guidance of J.A.H. R.L. conducted SEM imaging and performed measurements of semiconductor nanowire dimensions with contributions from K.P. The data were analysed and interpreted by R.L. and J.A.H. R.L. performed all calculations, mathematical modelling and curve fitting to establish the combined Gibbs–Thomson/diffusion-limited flow-SLS growth model. R.L. and J.A.H. wrote the manuscript with contributions from K.P. R.M.D. conducted high-angle annular dark-field scanning transmission electron microscopy imaging and obtained the line scan profile of the segmented semiconductor nanowire using energy-dispersive X-ray analysis, while D.J.W. conducted high-resolution transmission electron microscopy imaging, obtained selected area diffraction patterns, analysed the semiconductor nanowire crystal structure and determined growth directions. J.K.B. prepared the Bi-coated Si substrates.

Corresponding author

Correspondence to Jennifer A. Hollingsworth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10500 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laocharoensuk, R., Palaniappan, K., Smith, N. et al. Flow-based solution–liquid–solid nanowire synthesis. Nature Nanotech 8, 660–666 (2013). https://doi.org/10.1038/nnano.2013.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing