Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Luminescence upconversion in colloidal double quantum dots

Subjects

Abstract

Luminescence upconversion nanocrystals capable of converting two low-energy photons into a single photon at a higher energy are sought-after for a variety of applications, including bioimaging1,2 and photovoltaic light harvesting3. Currently available systems, based on rare-earth-doped dielectrics4,5, are limited in both tunability and absorption cross-section. Here we present colloidal double quantum dots as an alternative nanocrystalline upconversion system, combining the stability of an inorganic crystalline structure with the spectral tunability afforded by quantum confinement. By tailoring its composition and morphology, we form a semiconducting nanostructure in which excited electrons are delocalized over the entire structure, but a double potential well is formed for holes. Upconversion occurs by excitation of an electron in the lower energy transition, followed by intraband absorption of the hole, allowing it to cross the barrier to a higher energy state. An overall conversion efficiency of 0.1% per double excitation event is achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Description of the upconversion nanocrystals.
Figure 2: Ensemble upconversion measurements.
Figure 3: Pump–probe luminescence upconversion experiments.
Figure 4: Single nanocrystal upconversion measurements.

Similar content being viewed by others

References

  1. Wang, F., Banerjee, D., Liu, Y., Chen, X. & Liu, X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135, 1839–1854 (2010).

    Article  CAS  Google Scholar 

  2. Zhou, J., Liu, Z. & Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323–1349 (2012).

    Article  CAS  Google Scholar 

  3. De Wild, J., Meijerink, A., Rath, J. K., Van Sark, W. G. J. H. M. & Schropp, R. E. I. Upconverter solar cells: materials and applications. Energy Environ. Sci. 4, 4835–4848 (2011).

    Article  CAS  Google Scholar 

  4. Menyuk, N. NaYF4: Yb,Er—an efficient upconversion phosphor. Appl. Phys. Lett. 21, 159–161 (1972).

    Article  CAS  Google Scholar 

  5. Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    Article  CAS  Google Scholar 

  6. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  7. Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009).

    Article  CAS  Google Scholar 

  8. Chan, E. M. et al. Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. Nano Lett. 12, 3839–3845 (2012).

    Article  CAS  Google Scholar 

  9. Zou, W., Visser, C., Maduro, J. A., Pshenichnikov, M. S. & Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nature Photon. 6, 560–564 (2012).

    Article  CAS  Google Scholar 

  10. Parker, C. A. & Hatchard, C. G. Sensitised anti-Stokes delayed fluorescence. Proc. Chem. Soc. 386–387 (1962).

  11. Baluschev, S. et al. Up-conversion fluorescence: noncoherent excitation by sunlight. Phys. Rev. Lett. 97, 7–9 (2006).

    Article  Google Scholar 

  12. Cheng, Y. Y. et al. Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ. Sci. 5, 6953–6959 (2012).

    Article  CAS  Google Scholar 

  13. Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).

    Article  CAS  Google Scholar 

  14. Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004).

    Article  CAS  Google Scholar 

  15. Amirav, L. & Alivisatos, A. P. Photocatalytic hydrogen production with tunable nanorod heterostructures. J. Phys. Chem. Lett. 1, 1051–1054 (2010).

    Article  CAS  Google Scholar 

  16. Anshu, P. & Guyot-Sionnest, P. Slow electron cooling in colloidal quantum dots. Science 322, 929–932 (2008).

    Article  Google Scholar 

  17. Deutsch, Z., Schwartz, O., Tenne, R., Popovitz-Biro, R. & Oron, D. Two-color antibunching from band-gap engineered colloidal semiconductor nanocrystals. Nano Lett. 12, 2948–2952 (2012).

    Article  CAS  Google Scholar 

  18. Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    Article  CAS  Google Scholar 

  19. Yang, Y., Zhang, Y. H., Shen, W. Z. & Liu, H. C. Semiconductor infrared up-conversion devices. Prog. Quantum Electron. 35, 77–108 (2011).

    Article  Google Scholar 

  20. Heimbrodt, W., Happ, M. & Henneberger, F. Giant anti-Stokes photoluminescence from semimagnetic heterostructures. Phys. Rev. B 60, R16326–R16329 (1999).

    Article  CAS  Google Scholar 

  21. Potemski, M. et al. Auger recombination within Landau levels in a two-dimensional electron gas. Phys. Rev. Lett. 66, 2239–2242 (1991).

    Article  CAS  Google Scholar 

  22. Seidel, W., Titkov, A., André, J., Voisin, P. & Voos, M. High-efficiency energy up-conversion by an ‘Auger fountain’ at an InP–AlInAs type-II heterojunction. Phys. Rev. Lett. 73, 2356–2359 (1994).

    Article  CAS  Google Scholar 

  23. Cheong, H., Fluegel, B., Hanna, M. & Mascarenhas, A. Photoluminescence up-conversion in AlxGa1– xAs heterostructures. Phys. Rev. B 58, 4254–4257 (1998).

    Article  Google Scholar 

  24. Avidan, A. & Oron, D. Large blue shift of the biexciton state in tellurium doped CdSe colloidal quantum dots. Nano Lett. 8, 2384–2387 (2008).

    Article  CAS  Google Scholar 

  25. Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    Article  CAS  Google Scholar 

  26. Talapin, D. V et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 2951–2959 (2007).

    Article  CAS  Google Scholar 

  27. Woggon, U., Winda, O., Langbeina, W., Gogolinb, O. & Klingshirna, C. Confined biexcitons in CuBr quantum dots. J. Lumin. 59, 135–145 (1994).

    Article  CAS  Google Scholar 

  28. Boyer, J-C. & van Veggel, F. C. J. M . Absolute quantum yield measurements of colloidal NaYF4:Er3+,Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010).

    Article  CAS  Google Scholar 

  29. Chen, G., Ohulchanskyy, T. Y., Kachynski, A., Agren, H., Prasad, P. N. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm. ACS Nano 5, 4981–4986 (2011).

    Article  CAS  Google Scholar 

  30. Xing, G. et al. Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures. ACS Nano 6, 10835–10844 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Minerva Foundation, the Leona M. and Harry B. Helmsley charitable trust, and the European Research Council (starting investigator grant SINSLIM 258221). D.O. is the incumbent of the Recanati Career Development Chair in Energy Research.

Author information

Authors and Affiliations

Authors

Contributions

Z.D. synthesized the nanocrystals. L.N. and Z.D. performed the optical experiments. D.O. conceived and supervised the project. The manuscript was written jointly by all authors.

Corresponding author

Correspondence to Dan Oron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1435 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deutsch, Z., Neeman, L. & Oron, D. Luminescence upconversion in colloidal double quantum dots. Nature Nanotech 8, 649–653 (2013). https://doi.org/10.1038/nnano.2013.146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing