Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets

A Corrigendum to this article was published on 04 December 2013

This article has been updated

Abstract

Understanding how nanomaterials interact with cell membranes is related to how they cause cytotoxicity and is therefore critical for designing safer biomedical applications. Recently, graphene (a two-dimensional nanomaterial) was shown to have antibacterial activity on Escherichia coli, but its underlying molecular mechanisms remain unknown. Here we show experimentally and theoretically that pristine graphene and graphene oxide nanosheets can induce the degradation of the inner and outer cell membranes of Escherichia coli, and reduce their viability. Transmission electron microscopy shows three rough stages, and molecular dynamics simulations reveal the atomic details of the process. Graphene nanosheets can penetrate into and extract large amounts of phospholipids from the cell membranes because of the strong dispersion interactions between graphene and lipid molecules. This destructive extraction offers a novel mechanism for the molecular basis of graphene's cytotoxicity and antibacterial activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of E. coli exposed to graphene oxide nanosheets.
Figure 2: Graphene nanosheet insertion and lipid extraction.
Figure 3: Interaction energy profiles.
Figure 4: Lipid extraction by graphene in docking simulations.
Figure 5: Robustness of lipid extraction by graphene.
Figure 6: Lipid extraction by graphene oxide nanosheets.

Similar content being viewed by others

Change history

  • 26 November 2013

    In the version of this Article originally published, it was not made clear that the two Escherichia coli cells in the bottom left of Fig. 1a are from a different TEM image to the others. The figure and caption have now been corrected in the PDF and HTML versions of the Article.

References

  1. Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027–1030 (2006).

    Article  CAS  Google Scholar 

  2. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  3. Grossman, J. H. & McNeil, S. E. Nanotechnology in cancer medicine. Phys. Today 65, 38–42 (August, 2012).

    Article  CAS  Google Scholar 

  4. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  5. Zhao, Y., Xing, G. & Chai, Z. Nanotoxicology: are carbon nanotubes safe? Nature Nanotech. 3, 191–192 (2008).

    Article  CAS  Google Scholar 

  6. Nel, A., Xia, T., Mädler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    Article  CAS  Google Scholar 

  7. Kang, S-g. et al. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine. Proc. Natl Acad. Sci. USA 109, 15431–15436 (2012).

    Article  CAS  Google Scholar 

  8. Ge, C. et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl Acad. Sci. USA 108, 16968–16973 (2011).

    Article  CAS  Google Scholar 

  9. Wong-Ekkabut, J. et al. Computer simulation study of fullerene translocation through lipid membranes. Nature Nanotech. 3, 363–368 (2008).

    Article  CAS  Google Scholar 

  10. Qiao, R., Roberts, A. P., Mount, A. S., Klaine, S. J. & Ke, P. C. Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett. 7, 614–619 (2007).

    Article  CAS  Google Scholar 

  11. Shi, X., von dem Bussche, A., Hurt, R. H., Kane, A. B. & Gao, H. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nature Nanotech. 6, 714–719 (2011).

    Article  CAS  Google Scholar 

  12. Wallace, E. J. & Sansom, M. S. P. Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett. 8, 2751–2756 (2008).

    Article  CAS  Google Scholar 

  13. Zhang, Y. et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural Phaeochromocytoma-derived PC12 cells. ACS Nano 4, 3181–3186 (2010).

    Article  CAS  Google Scholar 

  14. Yang, K. & Ma, Y. Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nanotech. 5, 579–583 (2010).

    Article  CAS  Google Scholar 

  15. Vácha, R., Martinez-Veracoechea, F. J. & Frenkel, D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett. 11, 5391–5395 (2011).

    Article  Google Scholar 

  16. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  17. Feng, L. & Liu, Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine 6, 317–324 (2011).

    Article  CAS  Google Scholar 

  18. Sanchez, V. C., Jachak, A., Hurt, R. H. & Kane, A. B. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25, 15–34 (2011).

    Article  Google Scholar 

  19. Liu, Z., Robinson, J. T., Sun, X. & Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008).

    Article  CAS  Google Scholar 

  20. Okada, F. Beyond foreign-body-induced carcinogenesis: impact of reactive oxygen species derived from inflammatory cells in tumorigenic conversion and tumor progression. Int. J. Cancer 121, 2364–2372 (2007).

    Article  CAS  Google Scholar 

  21. Soldano, C., Mahmood, A. & Dujardin, E. Production, properties and potential of graphene. Carbon 48, 2127–2150 (2010).

    Article  CAS  Google Scholar 

  22. Yang, K. et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318–3323 (2010).

    Article  CAS  Google Scholar 

  23. Hu, W. et al. Graphene-based antibacterial paper. ACS Nano 4, 4317–4323 (2010).

    Article  CAS  Google Scholar 

  24. Akhavan, O. & Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–5736 (2010).

    Article  CAS  Google Scholar 

  25. Liu, S. et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011).

    Article  CAS  Google Scholar 

  26. Krishnamoorthy, K., Veerapandian, M., Zhang, L-H., Yun, K. & Kim, S. J. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C 116, 17280–17287 (2012).

    Article  CAS  Google Scholar 

  27. Hu, W. et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5, 3693–3700 (2011).

    Article  CAS  Google Scholar 

  28. Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).

    Article  CAS  Google Scholar 

  29. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

    Article  CAS  Google Scholar 

  30. Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotech. 3, 145–150 (2008).

    Article  CAS  Google Scholar 

  31. Liu, P., Huang, X., Zhou, R. & Berne, B. J. Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437, 159–162 (2005).

    Article  CAS  Google Scholar 

  32. Zhou, R., Huang, X., Margulis, C. J. & Berne, B. J. Hydrophobic collapse in multidomain protein folding. Science 305, 1605–1609 (2004).

    Article  CAS  Google Scholar 

  33. Berne, B. J., Weeks, J. D. & Zhou, R. Dewetting and hydrophobic interaction in physical and biological systems. Annu. Rev. Phys. Chem. 60, 85–103 (2009).

    Article  CAS  Google Scholar 

  34. Liu, S. et al. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28, 12364–12372 (2012).

    Article  CAS  Google Scholar 

  35. Lerf, A., He, H., Forster, M. & Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998).

    Article  CAS  Google Scholar 

  36. Shih, C. J., Lin, S., Sharma, R., Strano, M. S. & Blankschtein, D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 28, 235–241 (2012).

    Article  CAS  Google Scholar 

  37. Medhekar, N. V., Ramasubramaniam, A., Ruoff, R. S. & Shenoy, V. B. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4, 2300–2306 (2010).

    Article  CAS  Google Scholar 

  38. Gómez-Navarro, C. et al. Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010).

    Article  Google Scholar 

  39. Ganguly, A., Sharma, S., Papakonstantinou, P. & Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115, 17009–17019 (2011).

    Article  CAS  Google Scholar 

  40. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    Article  CAS  Google Scholar 

  41. Zhao, J. et al. Graphene oxide-based antibacterial cotton fabrics. Adv. Healthcare Mater. (in the press).

  42. Dowhan, W. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66, 199–232 (1997).

    Article  CAS  Google Scholar 

  43. Lee, S-Y. & MacKinnon, R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430, 232–235 (2004).

    Article  CAS  Google Scholar 

  44. Murzyn, K., Róg, T. & Pasenkiewicz-Gierula, M. Phosphatidylethanolamine–phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys. J. 88, 1091–1103 (2005).

    Article  CAS  Google Scholar 

  45. Zhao, W., Róg, T., Gurtovenko, A. A., Vattulainen, I. & Karttunen, M. Role of phosphatidylglycerols in the stability of bacterial membranes. Biochimie 90, 930–938 (2008).

    Article  CAS  Google Scholar 

  46. Berger, O., Edholm, O. & Jähnig, F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 72, 2002–2013 (1997).

  47. Anézo, C., de Vries, A. H., Höltje, H-D., Tieleman, D. P. & Marrink, S-J. Methodological issues in lipid bilayer simulations. J. Phys. Chem. B 107, 9424–9433 (2003).

    Article  Google Scholar 

  48. Benz, R. W., Castro-Román, F., Tobias, D. J. & White, S. H. Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys. J. 88, 805–817 (2005).

    Article  CAS  Google Scholar 

  49. Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Berne, Yuliang Zhao, Guosheng Shi, Huan Zhang, Jingyuan Li, Seung-gu Kang, Zhen Xia and P. Das for discussions. This work was partially supported by the National Natural Science Foundation of China (grant nos 11290164, 11204269, 11172158 and 11105088), the National Basic Research Program of China (2012CB932400, 2013CB933800 and 2012CB932600) and the First-class Discipline of Universities in Shanghai. The authors acknowledge the IBM Blue Gene supercomputer and Shanghai Supercomputer Center for computational resources. R.Z. acknowledges support from the IBM Blue Gene Science Program.

Author information

Authors and Affiliations

Authors

Contributions

R.H.Z., Q.H., H.P.F. and Y.S.T. conceived and designed the experiments and simulations. Y.S.T., P.X., T.H. and M.Z. performed the simulations. M.L. performed the experiments. Y.S.T., P.X., H.P.F., R.H.Z., Q.H., C.H.F. and Z.R.L. analysed the data. Y.S.T., R.H.Z., H.P.F., P.X., M.C., Q.H. and C.H.F. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Qing Huang or Ruhong Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 14250 kb)

Supplementary movie 1

Supplementary movie 1 (SWF 10563 kb)

Supplementary movie 2

Supplementary movie 2 (SWF 11062 kb)

Supplementary movie 3

Supplementary movie 3 (SWF 4116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, Y., Lv, M., Xiu, P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotech 8, 594–601 (2013). https://doi.org/10.1038/nnano.2013.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing