Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-controlled domain wall traps in ferromagnetic nanowires

Abstract

Electrical control of magnetism has the potential to bring about revolutionary new spintronic devices1,2,3,4,5, many of which rely on efficient manipulation of magnetic domain walls in ferromagnetic nanowires2,3,4. Recently, it has been shown that voltage-induced charge accumulation at a metal–oxide interface can influence domain wall motion in ultrathin metallic ferromagnets6,7,8, but the effects have been relatively modest and limited to the slow, thermally activated regime9. Here we show that a voltage can generate non-volatile switching of magnetic properties at the nanoscale by modulating interfacial chemistry rather than charge density. Using a solid-state ionic conductor as a gate dielectric10,11, we generate unprecedentedly strong voltage-controlled domain wall traps that function as non-volatile, electrically programmable and switchable pinning sites. Pinning strengths of at least 650 Oe can be readily achieved, enough to bring to a standstill domain walls travelling at speeds of at least 20 m s−1. We exploit this new magneto-ionic effect to demonstrate a prototype non-volatile memory device in which voltage-controlled domain wall traps facilitate electrical bit selection in a magnetic nanowire register.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experiment schematics and magnetic hysteresis loops.
Figure 2: Space- and time-resolved domain expansion.
Figure 3: Control of domain wall propagation in magnetic nanowire conduits.
Figure 4: Properties of domain wall traps in nanowire conduits.
Figure 5: Domain wall trap-based three-bit register.

Similar content being viewed by others

References

  1. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  2. Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  3. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  CAS  Google Scholar 

  4. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  5. Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010).

    Article  CAS  Google Scholar 

  6. Schellekens, A., van den Brink, A., Franken, J., Swagten, H. & Koopmans, B. Electric-field control of domain wall motion in perpendicularly magnetized materials. Nature Commun. 3, 847 (2012).

    Article  CAS  Google Scholar 

  7. Chiba, D. et al. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization. Nature Commun. 3, 888 (2012).

    Article  CAS  Google Scholar 

  8. Bauer, U., Emori, S. & Beach, G. S. D. Electric field control of domain wall propagation in Pt/Co/GdOx films. Appl. Phys. Lett. 100, 192408 (2012).

    Article  Google Scholar 

  9. Bauer, U., Emori, S. & Beach, G. S. D. Voltage-gated modulation of domain wall creep dynamics in an ultrathin metallic ferromagnet. Appl. Phys. Lett. 101, 172403 (2012).

    Article  Google Scholar 

  10. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nature Nanotech. 8, 13–24 (2013).

    Article  CAS  Google Scholar 

  11. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  CAS  Google Scholar 

  12. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  CAS  Google Scholar 

  13. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotech. 4, 158–161 (2009).

    Article  CAS  Google Scholar 

  14. Endo, M., Kanai, S., Ikeda, S., Matsukura, F. & Ohno, H. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96, 212503 (2010).

    Article  Google Scholar 

  15. Wang, W. G., Li, M. G., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nature Mater. 11, 64–68 (2012).

    Article  CAS  Google Scholar 

  16. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nature Mater. 11, 39–43 (2012).

    Article  CAS  Google Scholar 

  17. Bauer, U., Przybylski, M., Kirschner, J. & Beach, G. S. D. Magnetoelectric charge trap memory. Nano Lett. 12, 1437–1442 (2012).

    Article  CAS  Google Scholar 

  18. Chiba, D. et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nature Mater. 10, 853–856 (2011).

    Article  CAS  Google Scholar 

  19. Manchon, A. et al. Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers. J. Appl. Phys. 104, 043914 (2008).

    Article  Google Scholar 

  20. Manchon, A. et al. X-ray analysis of the magnetic influence of oxygen in Pt/Co/AlOx trilayers. J. Appl. Phys. 103, 07A912 (2008).

    Article  Google Scholar 

  21. Yang, J. J. et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009).

    Article  Google Scholar 

  22. Kwon, D. H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotech. 5, 148–153 (2010).

    Article  CAS  Google Scholar 

  23. Chung, T. K., Carman, G. P. & Mohanchandra, K. P. Reversible magnetic domain-wall motion under an electric field in a magnetoelectric thin film. Appl. Phys. Lett. 92, 112509 (2008).

    Article  Google Scholar 

  24. Lahtinen, T. H. E., Tuomi, J. O. & van Dijken, S. Pattern transfer and electric-field-induced magnetic domain formation in multiferroic heterostructures. Adv. Mater. 23, 3187–3191 (2011).

    Article  CAS  Google Scholar 

  25. Dean, J., Bryan, M. T., Schrefl, T. & Allwood, D. A. Stress-based control of magnetic nanowire domain walls in artificial multiferroic systems. J. Appl. Phys. 109, 023915 (2011).

    Article  Google Scholar 

  26. Lahtinen, T. H. E., Franke, K. J. A. & van Dijken, S. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci. Rep. 2, 258 (2012).

    Article  Google Scholar 

  27. Lei, N. et al. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nature Commun. 4, 1378 (2013).

    Article  Google Scholar 

  28. Beckel, D. et al. Thin films for micro solid oxide fuel cells. J. Power Sources 173, 325–345 (2007).

    Article  CAS  Google Scholar 

  29. Mogensen, M. & Skaarup, S. Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics 86–88, 1151–1160 (1996).

    Article  Google Scholar 

  30. Balluffi, R. W., Allen, S. M. & Carter, W. C. Kinetics of Materials 209–228 (Wiley, 2005).

    Book  Google Scholar 

  31. Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotech. 3, 429–433 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF-ECCS -1128439). Technical support from D. Bono, M. Tarkanian and E. Rapoport is acknowledged. The authors thank S.R. Bishop for discussions on solid oxide ion conductors. Work was performed using instruments in the MIT Nanostructures Laboratory, the Scanning Electron-Beam Lithography facility at the Research Laboratory of Electronics, and the Center for Materials Science and Engineering at MIT. S.E. acknowledges financial support from the NSF Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

U.B. proposed the study and G.B. supervised it. U.B. and G.B. designed the experiments with input from S.E. S.E. and U.B. prepared the samples. U.B. performed experiments on continuous film samples, and U.B. and S.E. performed experiments on nanowire samples. U.B. analysed the data and wrote the manuscript with assistance from G.B. and input from S.E. All authors discussed the results.

Corresponding author

Correspondence to Geoffrey S. D. Beach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, U., Emori, S. & Beach, G. Voltage-controlled domain wall traps in ferromagnetic nanowires. Nature Nanotech 8, 411–416 (2013). https://doi.org/10.1038/nnano.2013.96

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing