Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exchange bias of the interface spin system at the Fe/MgO interface

Abstract

The ferromagnet/oxide interface is key to developing emerging multiferroic and spintronic technologies with new functionality. Here we probe the Fe/MgO interface magnetization, and identify a new exchange bias phenomenon manifested only in the interface spin system, and not in the bulk. The interface magnetization exhibits a pronounced exchange bias, and the hysteresis loop is shifted entirely to one side of the zero field axis. However, the bulk magnetization does not, in marked contrast to typical systems where exchange bias is manifested in the net magnetization. This reveals the existence of an antiferromagnetic exchange pinning layer at the interface, identified here as FeO patches that exist even for a nominally ‘clean’ interface. These results demonstrate that atomic moments at the interface are non-collinear with the bulk magnetization, and therefore may affect the net anisotropy or serve as spin scattering sites. We control the exchange bias magnitude by varying the interface oxygen concentration and Fe–O bonding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of TMR structure and of atomic moments near the Fe/MgO interface.
Figure 2: Measurement geometry and MOKE/MSHG data.
Figure 3: Classic model of exchange bias.
Figure 4: TEM images of sample interfaces.
Figure 5: Magnitude of exchange bias field HE versus applied field direction.
Figure 6: Temperature dependence of the exchange bias.

Similar content being viewed by others

References

  1. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotech. 4, 158–161 (2009).

    Article  CAS  Google Scholar 

  2. Bibes, M., Villegas, J. E. & Barthelemy, A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60, 5–84 (2011).

    Article  CAS  Google Scholar 

  3. Ikeda, S. et al. A perpendicular anisotropy CoFeB–MgO magnetic tunnel junction. Nature Mater. 9, 721–724 (2010).

    Article  CAS  Google Scholar 

  4. Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010).

    Article  CAS  Google Scholar 

  5. Li, C. H., van't Erve, O. M. J. & Jonker, B. T. Electrical injection and detection of spin accumulation in silicon at 500 K with magnetic metal/silicon dioxide contacts. Nature Commun. 2, 245 (2011).

    Article  CAS  Google Scholar 

  6. Chu, Y-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008).

    Article  CAS  Google Scholar 

  7. Fert, A. Nobel Lecture: Origin, development and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008).

    Article  CAS  Google Scholar 

  8. Chappert, C., Fert, A. & Nguyen van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  9. Parkin, S. S. P. et al. Giant tunneling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  CAS  Google Scholar 

  10. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistence in single crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    Article  CAS  Google Scholar 

  11. Dery, H., Dalal, P., Cywinski, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    Article  CAS  Google Scholar 

  12. Butler, W. H., Zhang, X-G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article  Google Scholar 

  13. Teixeira, J. M. et al. Resonant tunneling through electronic trapping states in thin MgO magnetic junctions. Phys. Rev. Lett. 106, 196601 (2011).

    Article  CAS  Google Scholar 

  14. Meyerheim, H. L. et al. Surface X-ray diffraction analysis of the MgO/Fe(001) interface: evidence for an FeO layer. Phys. Rev. B 65, 144433 (2002).

    Article  Google Scholar 

  15. Tusche, C. et al. Oxygen-induced symmetrization and structural coherency in Fe/MgO/Fe(001) magnetic tunnel junctions. Phys. Rev. Lett. 95, 176101 (2005).

    Article  CAS  Google Scholar 

  16. Tusche, C. et al. Growth sequence and interface formation in the Fe/MgO/Fe(001) tunnel junction analyzed by surface X-ray diffraction. Phys. Rev. B 74, 195422 (2006).

    Article  Google Scholar 

  17. Wang, S. G. et al. Evidence for FeO formation at the Fe/MgO interface in epitaxial TMR structure by X-ray photoelectron spectroscopy. J. Magn. Magn. Mater. 310, 1935–1936 (2007).

    Article  CAS  Google Scholar 

  18. Zhang, X-G., Butler, W. H. & Bandyopadhyay, A. Effects of the iron-oxide layer in Fe–FeO–MgO–Fe tunneling junctions. Phys. Rev. B 68, 092402 (2003).

    Article  Google Scholar 

  19. Oh, H., Lee, S. B., Seo, J., Min, H. G. & Kim, J-S. Chemical structure of the interface between MgO films and Fe(001). Appl. Phys. Lett. 82, 361–363 (2003).

    Article  CAS  Google Scholar 

  20. Nogues, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  CAS  Google Scholar 

  21. Berkowitz, A. E. & Takano, K. Exhange anisotropy—a review. J. Magn. Magn. Mater. 200, 552–570 (1999).

    Article  CAS  Google Scholar 

  22. Tiusan, C. et al. Interfacial resonance state probed by spin-polarized tunneling in epitaxial Fe/MgO/Fe tunnel junctions. Phys. Rev. Lett. 93, 16602 (2004).

    Article  Google Scholar 

  23. He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nature Mater. 9, 579–585 (2010).

    Article  CAS  Google Scholar 

  24. Wu, J. et al. Direct measurement of rotatable and frozen CoO spins in exchange bias system of CoO/Fe/Ag(001). Phys. Rev. Lett. 104, 217204 (2010).

    Article  CAS  Google Scholar 

  25. Skumryev, V. et al. Magnetization reversal by electric field de-coupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys. Rev. Lett. 106, 057206 (2010).

    Article  Google Scholar 

  26. Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Mater. 9, 756–761 (2010).

    Article  CAS  Google Scholar 

  27. Valev, V. K., Gruyters, M., Kirilyuk, A. & Rasing, Th. Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface. Phys. Rev. Lett. 96, 067206 (2006).

    Article  CAS  Google Scholar 

  28. Couet, S. et al. Stabilization of antiferromagnetic order in FeO nanolayers, Phys. Rev. Lett. 103, 097201 (2009).

    Article  CAS  Google Scholar 

  29. Kataoka, M. Thermal desorption of oxygen-containing molecules on (100)MgO substrates for BaKBiO epitaxial growth. Physica C 254, 307–310 (1995).

    Article  CAS  Google Scholar 

  30. Reif, J., Zink, J. C., Schneider, C-M. & Kirschner, J. Effects of surface magnetism on optical second harmonic generation. Phys. Rev. Lett. 67, 2878–2881 (1991).

    Article  CAS  Google Scholar 

  31. Colliex, C., Manoubi, T. & Ortiz, C. Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxide system. Phys. Rev. B 44, 011402 (1991).

    Article  CAS  Google Scholar 

  32. Pan, R-P., Wei, H. D. & Shen, Y. R. Optical second-harmonic generation from magnetized surfaces. Phys. Rev. B 39, 1229–1234 (1989).

    Article  CAS  Google Scholar 

  33. Wierenga, H. A., Prins, M. W. J., Abraham, D. L. & Rasing, Th. Magnetization-induced optical second-harmonic generation: a probe for interface magnetism. Phys. Rev. B 50, 1282–1285 (1994).

    Article  CAS  Google Scholar 

  34. Koopmans, B., Koerkamp, M. G., Rasing, Th. & van den Berg, H. Observation of large Kerr angles in the nonlinear optical response from magnetic multilayers. Phys. Rev. Lett. 74, 3692–3695 (1995).

    Article  CAS  Google Scholar 

  35. Gruyters, M., Bernhard, T. & Winter, H. Evidence for noncollinearity between surface and bulk magnetization in ultrathin Co films. Phys. Rev. Lett. 94, 227205 (2005).

    Article  CAS  Google Scholar 

  36. Sirotti, F. et al. Dynamics of surface magnetization on a nanosecond time scale. Phys. Rev. B 61, R9221–R9224 (2000).

    Article  CAS  Google Scholar 

  37. Allenspach, R., Taborelli, M., Landolt, M. & Siegmann, H. C. Surface precursor to magnetic-domain nucleation observed by secondary-electron spin polarization. Phys. Rev. Lett. 56, 953–956 (1986).

    Article  CAS  Google Scholar 

  38. Scholl, D. et al. Exchange interactions at the surface of a ferromagnet, Phys. Rev. B 43, 13309–13313 (1991).

    Article  CAS  Google Scholar 

  39. Zhao, H. B. et al. Interface magnetization reversal and anisotropy in Fe/AlGaAs(001). Phys. Rev. Lett. 95, 137202 (2005).

    Article  CAS  Google Scholar 

  40. Zhao, H. B. et al. Ultrafast interface magnetization dynamics in Fe/AlGaAs(001) heterostructures. Appl. Phys. Lett. 91, 05211 (2007).

    Google Scholar 

  41. Kugel, G. et al. Lattice dynamics of wustite (FeO). Phys. Rev. B 16, 378–385 (1977).

    Article  CAS  Google Scholar 

  42. Koon, N. C. Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces. Phys. Rev. Lett. 78, 4865–4868 (1997).

    Article  CAS  Google Scholar 

  43. O'Handley, R. C. Modern Magnetics Materials Principles and Application, Ch. 7, 220–224 (Wiley, 1999).

    Google Scholar 

  44. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).

    Article  Google Scholar 

  45. Meiklejohn, W. H. Exchange anisotropy—a review. J. Appl. Phys. 33, 1328–1335 (1962).

    Article  CAS  Google Scholar 

  46. Lin, X., Murthy, A. S., Hadjipanayis, G. C., Swann, C. & Shah, S. I. Magnetic and structural properties of Fe–FeO bilayers. J. Appl. Phys. 76, 6543–6545 (1994).

    Article  CAS  Google Scholar 

  47. Ohldag, H. et al. Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett. 91, 017203 (2003).

    Article  CAS  Google Scholar 

  48. Xi, H. Theoretical study of the blocking temperature in polycrystalline exchange biased bilayers. J. Magn. Magn. Mater. 288, 66–73 (2005).

    Article  CAS  Google Scholar 

  49. Koch, F. B. & Fine, M. E. Magnetic properties of FexO as related to the defect structure. J. Appl. Phys. 38, 1470–1471 (1967).

    Article  CAS  Google Scholar 

  50. Mather, P. G., Read, J. C. & Buhrman, R. A. Disorder, defects and bandgaps in ultrathin (001) MgO tunnel barriers. Phys. Rev. B 73, 205412 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The work at College of William and Mary was supported by the Office of Naval Research. The work at NRL was supported by core programmes and the Office of Naval Research. The work at Fudan University was supported by the Natural Science Foundation of China (grant nos 61222407 and 11074044).

Author information

Authors and Affiliations

Authors

Contributions

Y.F., G.L. and B.T.J. conceived the experiment. A.T.H. and C.L. grew the samples and carried out magnetic characterization using vibrating sample magnetometry. R.G. performed the TEM measurements. Y.F. performed the MSHG and MOKE measurements. All authors contributed to interpretation of the data. Y.F., K.J.S., G.L. and B.T.J. wrote the manuscript.

Corresponding authors

Correspondence to G. Lüpke or B. T. Jonker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Y., Smith, K., Lüpke, G. et al. Exchange bias of the interface spin system at the Fe/MgO interface. Nature Nanotech 8, 438–444 (2013). https://doi.org/10.1038/nnano.2013.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing