Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-distance coherent coupling in a quantum dot array

Abstract

Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau–Zener–Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linear array of three quantum dots and real-time tunnelling measurements.
Figure 2: Co-tunnelling between outer dots.
Figure 3: Real-time tunnelling.
Figure 4: Microwave-driven transitions.
Figure 5: LZS interference.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 47, 120–126 (1998).

    Article  Google Scholar 

  2. Taylor, J. M. et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nature Phys. 1, 177–183 (2005).

    Article  CAS  Google Scholar 

  3. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  Google Scholar 

  4. Hayashi, T., Fujisawa, T., Cheong, H. D., Jeong, Y. H. & Hirayama, Y. Coherent manipulation of electronic states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003).

    Article  CAS  Google Scholar 

  5. Oosterkamp, T. H. et al. Microwave spectroscopy of a quantum-dot molecule. Nature 395, 873–876 (1998).

    Article  CAS  Google Scholar 

  6. Petta, J. R., Johnson, A. C., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Manipulation of a single charge in a double quantum dot. Phys. Rev. Lett. 93, 186802 (2004).

    Article  CAS  Google Scholar 

  7. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  8. Nowack, K. C. et al. Single-shot correlations and two-qubit gate of solid-state spins. Science 333, 1269–1272 (2011).

    Article  CAS  Google Scholar 

  9. Fowler, A. G., Stephens, A. M. & Groszkowski, P. High-threshold universal quantum computation on the surface code. Phys. Rev. A 80, 052312 (2009).

    Article  Google Scholar 

  10. Stephens, A. M. & Evans, Z. W. E. Accuracy threshold for concatenated error detection in one dimension. Phys. Rev. A 80, 022313 (2009).

    Article  Google Scholar 

  11. Kim, K. et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010).

    Article  CAS  Google Scholar 

  12. Recher, P., Loss, D. & Levy, J. in Macroscopic Quantum Coherence and Quantum Computing 293–306 (Kluwer Academic, 2001).

    Book  Google Scholar 

  13. Mattis, D. C. The Theory of Magnetism made Simple (World Scientific, 2006).

    Book  Google Scholar 

  14. Schmidt-Kaler, F. et al. Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003).

    Article  CAS  Google Scholar 

  15. Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    Article  CAS  Google Scholar 

  16. Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007).

    Article  Google Scholar 

  17. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  CAS  Google Scholar 

  18. Taylor, J. M. & Lukin, M. D. Cavity quantum electrodynamics with semiconductor double-dot molecules on a chip. Preprint at http://arxiv.org/abs/cond-mat/0605144v1 (2006).

  19. Burkard, G. et al. & Imamoglu, A. Ultra-long-distance interaction between spin qubits. Phys. Rev. B 74, 041307(R) (2006).

    Article  Google Scholar 

  20. Trif, M., Golovach, V. N. & Loss, D. Spin dynamics in InAs nanowire quantum dots coupled to a transmission line. Phys. Rev. B 77, 045434 (2008).

    Article  Google Scholar 

  21. Frey, T. et al. Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108, 046807 (2012).

    Article  CAS  Google Scholar 

  22. Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).

    Article  CAS  Google Scholar 

  23. Hermelin, S. et al. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011).

    Article  CAS  Google Scholar 

  24. Mcneil, R. P. G. et al. On-demand single-electron transfer between distant quantum dots. Nature 477, 439–442 (2011).

    Article  CAS  Google Scholar 

  25. Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nature Phys. 3, 192–196 (2007).

    Article  CAS  Google Scholar 

  26. Ihn, T. Semiconductor Nanostructures: Quantum states and Electronic Transport (Oxford Univ. Press, 2010).

    Google Scholar 

  27. Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Fast single-charge sensing with a rf quantum point contact. Appl. Phys. Lett. 91, 162101 (2007).

    Article  Google Scholar 

  28. Busl, M. et al. Bipolar spin blockade and coherent state superpositions in a triple quantum dot. Nature Nanotech. 8, 261–265 (2013).

    Article  CAS  Google Scholar 

  29. Gustavsson, S. et al. Electron counting in quantum dots. Surf. Sci. Rep. 64, 191–232 (2009).

    Article  CAS  Google Scholar 

  30. Van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2003).

    Article  CAS  Google Scholar 

  31. Shevchenko, S. N., Ashhab, S. & Nori, F. Landau–Zener–Stückelberg interferometry. Phys. Rep. 492, 1–30 (2010).

    Article  CAS  Google Scholar 

  32. Child, M. S. Molecular Collision Theory (Dover Publications, 1974).

  33. Nikitin, E. E. & Umanski, S. Y. Theory of Slow Atomic Collisions (Springer, 1984).

    Book  Google Scholar 

  34. Oliver, W. D. et al. Mach–Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653–1657 (2005).

    Article  CAS  Google Scholar 

  35. Petta, J. R., Lu, H. & Gossard, A. C. A coherent beam splitter for electronic spin states. Science 327, 669–672 (2010).

    Article  CAS  Google Scholar 

  36. Pioro-Ladrière, M. et al. Origin of switching noise in GaAs/AlxGa1–xAs lateral gated devices. Phys. Rev. B 72, 115331 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with T. Baart, R. Hanson, E. Kawakami, L. Kouwenhoven, Y. Nazarov, G. Platero, P. Scarlino and M. Shafiei, and thank A. van der Enden, J. Haanstra, R. Roeleveld and R. Schouten for technical support. This work is supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM), The Netherlands Organization for Scientific Research (NWO), the Office of the Director of National Intelligence, Intelligence Advanced Research Projects Activity (IARPA), through the US Army Research Office (grant W911NF-12-1-0354), the European Office of Aerospace Research and Development (EOARD) and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

F.R.B. performed the experiment. C.R. and W.W. grew the heterostructure. F.R.B. fabricated the sample. F.R.B. and P.B. carried out the data analysis. F.R.B., P.B and L.M.K.V. contributed to interpretation of the data and commented on the manuscript. F.R.B. and L.M.K.V. wrote the manuscript.

Corresponding author

Correspondence to L. M. K. Vandersypen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 935 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braakman, F., Barthelemy, P., Reichl, C. et al. Long-distance coherent coupling in a quantum dot array. Nature Nanotech 8, 432–437 (2013). https://doi.org/10.1038/nnano.2013.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing