Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Majorana's wires

Experiments on nanowires have shown evidence of solid-state analogues of the particles predicted by Ettore Majorana more than 70 years ago. Although stronger confirmation is still to come, these first observations have already fuelled expectations of fundamental results and potential applications in quantum information technology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A typical experimental set-up for the Majorana zero mode detection in a nanowire.
Figure 2: Two phases of the Kitaev chain.
Figure 3: Electron-excitation spectra in semiconductor and topological insulator nanowires.

References

  1. Majorana, E. Nuovo Cimento 14, 171–184 (1937).

    Article  CAS  Google Scholar 

  2. Wilczek, F. Nature Phys. 5, 614–618 (2009).

    Article  CAS  Google Scholar 

  3. Franz, M. Physics 3, 24 (2010).

    Article  Google Scholar 

  4. Stern, A. Nature 464, 187–193 (2010).

    Article  CAS  Google Scholar 

  5. Nayak, C. et al. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  CAS  Google Scholar 

  6. Mourik, V., Zuo, K., Frolov, S. M., Plissard, S. R., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  7. Deng, M. T. et al. Nano Lett. 12, 6414–6419 (2012).

    Article  CAS  Google Scholar 

  8. Das, A. et al. Nature Phys. 8, 887–895 (2012).

    Article  CAS  Google Scholar 

  9. Finck, A. D. K., Van Harlingen, D. J., Mohseni, P. K., Jung, K. & Li, X. Preprint at http://arXiv.org/abs/1212.1101 (2012).

  10. Rokhinson, L. P., Liu, X. & Furdyna, J. K. Nature Phys. 8, 795–799 (2012).

    Article  CAS  Google Scholar 

  11. Moore, G. & Read, N. Nucl. Phys. B 360, 362–396 (1991).

    Article  Google Scholar 

  12. Kitaev, A. Ann. Phys. 303, 2–30 (2003).

    Article  CAS  Google Scholar 

  13. Read, N. & Green, D. Phys. Rev. B 61, 10267–10297 (2000).

    Article  CAS  Google Scholar 

  14. Fu, L. & Kane, C. L. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  15. Sau, J. D., Lutchyn, R. M., Tewari, S. & Das Sarma, S. Phys. Rev. Lett. 104, 040502 (2010).

    Article  Google Scholar 

  16. Alicea, J. Phys. Rev. B 81, 125318 (2010).

    Article  Google Scholar 

  17. Kitaev, A. Y. Phys. Usp. 44, 131–136 (2001).

    Article  Google Scholar 

  18. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Phys. Rev. Lett. 105, 077001 (2010).

    Article  Google Scholar 

  19. Oreg, Y., Refael, G. & von Oppen, F. Phys. Rev. Lett. 105, 177002 (2010).

    Article  Google Scholar 

  20. Alicea, J. Rep. Prog. Phys. 75, 076501 (2012).

    Article  Google Scholar 

  21. Cook, A. M. & Franz, M. Phys. Rev. B 84, 201105(R) (2011).

    Article  Google Scholar 

  22. Cook, A. M., Vazifeh, M. M. & Franz, M. Phys. Rev. B 86, 155431 (2012).

    Article  Google Scholar 

  23. Moore, J. E. Nature 464, 194–198 (2010).

    Article  CAS  Google Scholar 

  24. Hasan, M. Z. & Kane, C. L. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  25. Rosenberg, G., Guo, H-M. & Franz, M. Phys. Rev. B 82, 041104(R) (2010).

    Article  Google Scholar 

  26. Peng, H. et al. Nature Mater. 9, 225–229 (2010).

    Article  CAS  Google Scholar 

  27. Zhang, D. et al. Phys. Rev. B 84, 165120 (2011).

    Article  Google Scholar 

  28. Wimmer, M., Akhmerov, A. R., Dahlhaus, J. P. & Beenakker, C. W. J. New J. Phys. 13, 053016 (2011).

    Article  Google Scholar 

  29. Stanescu, T. D., Tewari, S., Sau, J. D. & Das Sarma, S. Phys. Rev. Lett. 109, 266402 (2012).

    Article  Google Scholar 

  30. Liu, J., Potter, A. C., Law, K. T. & Lee, P. A. Phys. Rev. Lett. 109, 267002 (2012).

    Article  Google Scholar 

  31. Sau, J. D., Berg, E. & Halperin, B. I. Preprint at http://arXiv.org/abs/1206.4596 (2012).

  32. Fu, L. Phys. Rev. Lett. 104, 056402 (2010).

    Article  Google Scholar 

  33. Das Sarma, S., Stanescu, T. D. & Sau, J. D. Phys. Rev. B 86, 220506 (2012).

    Article  Google Scholar 

  34. Sau, J. D., Swingle, B. & Tewari, S. Preprint at http://arXiv.org/abs/1210.5514 (2012).

  35. Liu, J., Zhang, F-C. & Law, K. T. Preprint at http://arXiv.org/abs/1212.5879 (2012).

  36. Alicea, J., Oreg, Y., Refael, G., von Oppen, F. & Fisher, M. P. A. Nature Phys. 7, 412–417 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Franz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, M. Majorana's wires. Nature Nanotech 8, 149–152 (2013). https://doi.org/10.1038/nnano.2013.33

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing