Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells

Abstract

Many cell functions rely on the coordinated activity of signalling pathways at a subcellular scale1,2. However, there are few tools capable of probing and perturbing signalling networks with a spatial resolution matching the intracellular dimensions of their activity patterns. Here we present a generic magnetogenetic approach based on the self-assembly of signalling complexes on the surface of functionalized magnetic nanoparticles inside living cells. The nanoparticles act as nanoscopic hot spots that can be displaced by magnetic forces and trigger signal transduction pathways that bring about a cell response. We applied this strategy to Rho-GTPases, a set of molecular switches known to regulate cell morphology via complex spatiotemporal patterns of activity3,4. We demonstrate that the nanoparticle-mediated activation of signalling pathways leads to local remodelling of the actin cytoskeleton and to morphological changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular manipulation of fMNPs and protein functionalization schemes.
Figure 2: Cdc42–MNPs behave as cytosolic signalling patches.
Figure 3: Remote control of Rho-GTPase signalling at the plasma membrane.
Figure 4: Rac1-mediated actin polymerization is context-dependent.

Similar content being viewed by others

References

  1. Scott, J. D. & Pawson, T. Cell signalling in space and time: where proteins come together and when they're apart. Science 326, 1220–1224 (2009).

    Article  CAS  Google Scholar 

  2. Dehmelt, L. & Bastiaens, P. I. Spatial organization of intracellular communication: insights from imaging. Nature Rev. Mol. Cell Biol. 11, 440–452 (2010).

    Article  CAS  Google Scholar 

  3. Machacek, M. et al. Coordination of Rho GTPase activities during cell protrusion. Nature 461, 99–103 (2009).

    Article  CAS  Google Scholar 

  4. Pertz, O. Spatio-temporal Rho GTPase signalling—where are we now? J. Cell Sci. 123, 1841–1850 (2010).

    Article  CAS  Google Scholar 

  5. Vartak, N. & Bastiaens, P. Spatial cycles in G-protein crowd control. EMBO J. 29, 2689–2699 (2010).

    Article  CAS  Google Scholar 

  6. Mayer, G. & Heckel, A. Biologically active molecules with a ‘light switch'. Angew. Chem. Int. Ed. 45, 4900–4921 (2006).

    Article  CAS  Google Scholar 

  7. Umeda, N., Ueno, T., Pohlmeyer, C., Nagano, T. & Inoue, T. A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity. J. Am. Chem. Soc. 133, 12–14 (2011).

    Article  CAS  Google Scholar 

  8. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  Google Scholar 

  9. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  CAS  Google Scholar 

  10. Jun, Y. W., Seo, J. W. & Cheon, J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 41, 179–189 (2008).

    Article  CAS  Google Scholar 

  11. Desprat, N., Supatto, W., Pouille, P. A., Beaurepaire, E. & Farge, E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell 15, 470–477 (2008).

    Article  CAS  Google Scholar 

  12. Weber, G. F., Bjerke, M. A. & DeSimone, D. W. A mechanoresponsive cadherin–keratin complex directs polarized protrusive behavior and collective cell migration. Dev. Cell 22, 104–115 (2012).

    Article  CAS  Google Scholar 

  13. Mannix, R. J. et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nature Nanotech. 3, 36–40 (2008).

    Article  CAS  Google Scholar 

  14. Cho, M. H. et al. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nature Mater. 11, 1038–1043 (2012).

    Article  CAS  Google Scholar 

  15. Steketee, M. B. et al. Nanoparticle-mediated signalling endosome localization regulates growth cone motility and neurite growth. Proc. Natl Acad. Sci. USA 108, 19042–19047 (2011).

    Article  CAS  Google Scholar 

  16. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nature Nanotech. 5, 602–606 (2010).

    Article  CAS  Google Scholar 

  17. De Vries, A. H., Krenn, B. E., van Driel, R., Subramaniam, V. & Kanger, J. S. Direct observation of nanomechanical properties of chromatin in living cells. Nano Lett. 7, 1424–1427 (2007).

    Article  CAS  Google Scholar 

  18. Bausch, A. R., Moller, W. & Sackmann, E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573–579 (1999).

    Article  CAS  Google Scholar 

  19. Hendricks, A. G., Holzbaur, E. L. & Goldman, Y. E. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc. Natl Acad. Sci. USA 109, 18447–18452 (2012).

    Article  CAS  Google Scholar 

  20. Wirtz, D. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38, 301–326 (2009).

    Article  CAS  Google Scholar 

  21. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  Google Scholar 

  22. Lisse, D., Wilkens, V., You, C., Busch, K. & Piehler, J. Selective targeting of fluorescent nanoparticles to proteins inside live cells. Angew. Chem. Int. Ed. 50, 9352–9355 (2011).

    Article  CAS  Google Scholar 

  23. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  Google Scholar 

  24. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  25. Rudolph, M. G. et al. Thermodynamics of Ras/effector and Cdc42/effector interactions probed by isothermal titration calorimetry. J. Biol. Chem. 276, 23914–23921 (2001).

    Article  CAS  Google Scholar 

  26. Van der Gucht, J., Paluch, E., Plastino, J. & Sykes, C. Stress release drives symmetry breaking for actin-based movement. Proc. Natl Acad. Sci. USA 102, 7847–7852 (2005).

    Article  CAS  Google Scholar 

  27. Michiels, F. et al. Regulated membrane localization of Tiam1, mediated by the NH2-terminal pleckstrin homology domain, is required for Rac-dependent membrane ruffling and C-Jun NH2-terminal kinase activation. J. Cell Biol. 137, 387–398 (1997).

    Article  CAS  Google Scholar 

  28. Aoki, K. & Matsuda, M. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors. Nature Protoc. 4, 1623–1631 (2009).

    Article  CAS  Google Scholar 

  29. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nature Methods 5, 605–607 (2008).

    Article  CAS  Google Scholar 

  30. Hahne, P., Sechi, A., Benesch, S. & Small, J. V. Scar/WAVE is localised at the tips of protruding lamellipodia in living cells. FEBS Lett. 492, 215–220 (2001).

    Article  CAS  Google Scholar 

  31. Tseng, P., Judy, J. W. & Di Carlo, D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nature Methods 9, 1113–1119 (2012).

    Article  CAS  Google Scholar 

  32. Serge, A., Bertaux, N., Rigneault, H. & Marguet, D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nature Methods 5, 687–694 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Mueller and M. Warntjen for their contributions to the initial stage of this project, O. Chen and M. Bawendi for useful discussions on magnetic nanoparticles, D. Lévy for his help with electron microscopy and P.F. Lenne for a critical reading of the manuscript. This work was supported by the Human Frontier Science Program (grant no. RGP0005/2007).

Author information

Authors and Affiliations

Authors

Contributions

F.E., D.L.,Y.B., J.P., M.C. and M.D. conceived the project and designed the experiments. F.E., D.L. and M.C. acquired and analysed the data. F.E., J.P., M.C. and M.D. wrote the manuscript.

Corresponding authors

Correspondence to J. Piehler or M. Dahan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2303 kb)

Supplementary movie S1

Supplementary movie S1 (AVI 3804 kb)

Supplementary movie S2

Supplementary movie S2 (AVI 7666 kb)

Supplementary movie S3

Supplementary movie S3 (AVI 440 kb)

Supplementary movie S4

Supplementary movie S4 (AVI 6459 kb)

Supplementary movie S5

Supplementary movie S5 (AVI 3483 kb)

Supplementary movie S6

Supplementary movie S6 (AVI 7734 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etoc, F., Lisse, D., Bellaiche, Y. et al. Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells. Nature Nanotech 8, 193–198 (2013). https://doi.org/10.1038/nnano.2013.23

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.23

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research